Shin Kanouchi


2020

pdf bib
You May Like This Hotel Because ...: Identifying Evidence for Explainable Recommendations
Shin Kanouchi | Masato Neishi | Yuta Hayashibe | Hiroki Ouchi | Naoaki Okazaki
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Explainable recommendation is a good way to improve user satisfaction. However, explainable recommendation in dialogue is challenging since it has to handle natural language as both input and output. To tackle the challenge, this paper proposes a novel and practical task to explain evidences in recommending hotels given vague requests expressed freely in natural language. We decompose the process into two subtasks on hotel reviews: Evidence Identification and Evidence Explanation. The former predicts whether or not a sentence contains evidence that expresses why a given request is satisfied. The latter generates a recommendation sentence given a request and an evidence sentence. In order to address these subtasks, we build an Evidence-based Explanation dataset, which is the largest dataset for explaining evidences in recommending hotels for vague requests. The experimental results demonstrate that the BERT model can find evidence sentences with respect to various vague requests and that the LSTM-based model can generate recommendation sentences.

2017

pdf bib
Improving Japanese-to-English Neural Machine Translation by Voice Prediction
Hayahide Yamagishi | Shin Kanouchi | Takayuki Sato | Mamoru Komachi
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

This study reports an attempt to predict the voice of reference using the information from the input sentences or previous input/output sentences. Our previous study presented a voice controlling method to generate sentences for neural machine translation, wherein it was demonstrated that the BLEU score improved when the voice of generated sentence was controlled relative to that of the reference. However, it is impractical to use the reference information because we cannot discern the voice of the correct translation in advance. Thus, this study presents a voice prediction method for generated sentences for neural machine translation. While evaluating on Japanese-to-English translation, we obtain a 0.70-improvement in the BLEU using the predicted voice.

2016

pdf bib
Neural Reordering Model Considering Phrase Translation and Word Alignment for Phrase-based Translation
Shin Kanouchi | Katsuhito Sudoh | Mamoru Komachi
Proceedings of the 3rd Workshop on Asian Translation (WAT2016)

This paper presents an improved lexicalized reordering model for phrase-based statistical machine translation using a deep neural network. Lexicalized reordering suffers from reordering ambiguity, data sparseness and noises in a phrase table. Previous neural reordering model is successful to solve the first and second problems but fails to address the third one. Therefore, we propose new features using phrase translation and word alignment to construct phrase vectors to handle inherently noisy phrase translation pairs. The experimental results show that our proposed method improves the accuracy of phrase reordering. We confirm that the proposed method works well with phrase pairs including NULL alignments.

pdf bib
Controlling the Voice of a Sentence in Japanese-to-English Neural Machine Translation
Hayahide Yamagishi | Shin Kanouchi | Takayuki Sato | Mamoru Komachi
Proceedings of the 3rd Workshop on Asian Translation (WAT2016)

In machine translation, we must consider the difference in expression between languages. For example, the active/passive voice may change in Japanese-English translation. The same verb in Japanese may be translated into different voices at each translation because the voice of a generated sentence cannot be determined using only the information of the Japanese sentence. Machine translation systems should consider the information structure to improve the coherence of the output by using several topicalization techniques such as passivization. Therefore, this paper reports on our attempt to control the voice of the sentence generated by an encoder-decoder model. To control the voice of the generated sentence, we added the voice information of the target sentence to the source sentence during the training. We then generated sentences with a specified voice by appending the voice information to the source sentence. We observed experimentally whether the voice could be controlled. The results showed that, we could control the voice of the generated sentence with 85.0% accuracy on average. In the evaluation of Japanese-English translation, we obtained a 0.73-point improvement in BLEU score by using gold voice labels.

2015

pdf bib
Who caught a cold ? - Identifying the subject of a symptom
Shin Kanouchi | Mamoru Komachi | Naoaki Okazaki | Eiji Aramaki | Hiroshi Ishikawa
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)