Shiwan Zhao


2021

pdf bib
Multi-Label Few-Shot Learning for Aspect Category Detection
Mengting Hu | Shiwan Zhao | Honglei Guo | Chao Xue | Hang Gao | Tiegang Gao | Renhong Cheng | Zhong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Aspect category detection (ACD) in sentiment analysis aims to identify the aspect categories mentioned in a sentence. In this paper, we formulate ACD in the few-shot learning scenario. However, existing few-shot learning approaches mainly focus on single-label predictions. These methods can not work well for the ACD task since a sentence may contain multiple aspect categories. Therefore, we propose a multi-label few-shot learning method based on the prototypical network. To alleviate the noise, we design two effective attention mechanisms. The support-set attention aims to extract better prototypes by removing irrelevant aspects. The query-set attention computes multiple prototype-specific representations for each query instance, which are then used to compute accurate distances with the corresponding prototypes. To achieve multi-label inference, we further learn a dynamic threshold per instance by a policy network. Extensive experimental results on three datasets demonstrate that the proposed method significantly outperforms strong baselines.

pdf bib
Language Resource Efficient Learning for Captioning
Jia Chen | Yike Wu | Shiwan Zhao | Qin Jin
Findings of the Association for Computational Linguistics: EMNLP 2021

Due to complex cognitive and inferential efforts involved in the manual generation of one caption per image/video input, the human annotation resources are very limited for captioning tasks. We define language resource efficient as reaching the same performance with fewer annotated captions per input. We first study the performance degradation of caption models in different language resource settings. Our analysis of caption models with SC loss shows that the performance degradation is caused by the increasingly noisy estimation of reward and baseline with fewer language resources. To mitigate this issue, we propose to reduce the variance of noise in the baseline by generalizing the single pairwise comparison in SC loss and using multiple generalized pairwise comparisons. The generalized pairwise comparison (GPC) measures the difference between the evaluation scores of two captions with respect to an input. Empirically, we show that the model trained with the proposed GPC loss is efficient on language resource and achieves similar performance with the state-of-the-art models on MSCOCO by using only half of the language resources. Furthermore, our model significantly outperforms the state-of-the-art models on a video caption dataset that has only one labeled caption per input in the training set.

pdf bib
Efficient Mind-Map Generation via Sequence-to-Graph and Reinforced Graph Refinement
Mengting Hu | Honglei Guo | Shiwan Zhao | Hang Gao | Zhong Su
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A mind-map is a diagram that represents the central concept and key ideas in a hierarchical way. Converting plain text into a mind-map will reveal its key semantic structure and be easier to understand. Given a document, the existing automatic mind-map generation method extracts the relationships of every sentence pair to generate the directed semantic graph for this document. The computation complexity increases exponentially with the length of the document. Moreover, it is difficult to capture the overall semantics. To deal with the above challenges, we propose an efficient mind-map generation network that converts a document into a graph via sequence-to-graph. To guarantee a meaningful mind-map, we design a graph refinement module to adjust the relation graph in a reinforcement learning manner. Extensive experimental results demonstrate that the proposed approach is more effective and efficient than the existing methods. The inference time is reduced by thousands of times compared with the existing methods. The case studies verify that the generated mind-maps better reveal the underlying semantic structures of the document.

2019

pdf bib
CAN: Constrained Attention Networks for Multi-Aspect Sentiment Analysis
Mengting Hu | Shiwan Zhao | Li Zhang | Keke Cai | Zhong Su | Renhong Cheng | Xiaowei Shen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Aspect level sentiment classification is a fine-grained sentiment analysis task. To detect the sentiment towards a particular aspect in a sentence, previous studies have developed various attention-based methods for generating aspect-specific sentence representations. However, the attention may inherently introduce noise and downgrade the performance. In this paper, we propose constrained attention networks (CAN), a simple yet effective solution, to regularize the attention for multi-aspect sentiment analysis, which alleviates the drawback of the attention mechanism. Specifically, we introduce orthogonal regularization on multiple aspects and sparse regularization on each single aspect. Experimental results on two public datasets demonstrate the effectiveness of our approach. We further extend our approach to multi-task settings and outperform the state-of-the-art methods.

pdf bib
Domain-Invariant Feature Distillation for Cross-Domain Sentiment Classification
Mengting Hu | Yike Wu | Shiwan Zhao | Honglei Guo | Renhong Cheng | Zhong Su
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Cross-domain sentiment classification has drawn much attention in recent years. Most existing approaches focus on learning domain-invariant representations in both the source and target domains, while few of them pay attention to the domain-specific information. Despite the non-transferability of the domain-specific information, simultaneously learning domain-dependent representations can facilitate the learning of domain-invariant representations. In this paper, we focus on aspect-level cross-domain sentiment classification, and propose to distill the domain-invariant sentiment features with the help of an orthogonal domain-dependent task, i.e. aspect detection, which is built on the aspects varying widely in different domains. We conduct extensive experiments on three public datasets and the experimental results demonstrate the effectiveness of our method.

pdf bib
Learning to Detect Opinion Snippet for Aspect-Based Sentiment Analysis
Mengting Hu | Shiwan Zhao | Honglei Guo | Renhong Cheng | Zhong Su
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Aspect-based sentiment analysis (ABSA) is to predict the sentiment polarity towards a particular aspect in a sentence. Recently, this task has been widely addressed by the neural attention mechanism, which computes attention weights to softly select words for generating aspect-specific sentence representations. The attention is expected to concentrate on opinion words for accurate sentiment prediction. However, attention is prone to be distracted by noisy or misleading words, or opinion words from other aspects. In this paper, we propose an alternative hard-selection approach, which determines the start and end positions of the opinion snippet, and selects the words between these two positions for sentiment prediction. Specifically, we learn deep associations between the sentence and aspect, and the long-term dependencies within the sentence by leveraging the pre-trained BERT model. We further detect the opinion snippet by self-critical reinforcement learning. Especially, experimental results demonstrate the effectiveness of our method and prove that our hard-selection approach outperforms soft-selection approaches when handling multi-aspect sentences.