Shiyang Chen


2022

pdf bib
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm
Shaoyi Huang | Dongkuan Xu | Ian Yen | Yijue Wang | Sung-En Chang | Bingbing Li | Shiyang Chen | Mimi Xie | Sanguthevar Rajasekaran | Hang Liu | Caiwen Ding
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conventional wisdom in pruning Transformer-based language models is that pruning reduces the model expressiveness and thus is more likely to underfit rather than overfit. However, under the trending pretrain-and-finetune paradigm, we postulate a counter-traditional hypothesis, that is: pruning increases the risk of overfitting when performed at the fine-tuning phase. In this paper, we aim to address the overfitting problem and improve pruning performance via progressive knowledge distillation with error-bound properties. We show for the first time that reducing the risk of overfitting can help the effectiveness of pruning under the pretrain-and-finetune paradigm. Ablation studies and experiments on the GLUE benchmark show that our method outperforms the leading competitors across different tasks.