Narratives include a rich source of events unfolding over time and context. Automatic understanding of these events provides a summarised comprehension of the narrative for further computation (such as reasoning). In this paper, we study the Information Status (IS) of the events and propose a novel challenging task: the automatic identification of new events in a narrative. We define an event as a triplet of subject, predicate, and object. The event is categorized as new with respect to the discourse context and whether it can be inferred through commonsense reasoning. We annotated a publicly available corpus of narratives with the new events at sentence level using human annotators. We present the annotation protocol and study the quality of the annotation and the difficulty of the task. We publish the annotated dataset, annotation materials, and machine learning baseline models for the task of new event extraction for narrative understanding.
Human-assisting systems such as dialogue systems must take thoughtful, appropriate actions not only for clear and unambiguous user requests, but also for ambiguous user requests, even if the users themselves are not aware of their potential requirements. To construct such a dialogue agent, we collected a corpus and developed a model that classifies ambiguous user requests into corresponding system actions. In order to collect a high-quality corpus, we asked workers to input antecedent user requests whose pre-defined actions could be regarded as thoughtful. Although multiple actions could be identified as thoughtful for a single user request, annotating all combinations of user requests and system actions is impractical. For this reason, we fully annotated only the test data and left the annotation of the training data incomplete. In order to train the classification model on such training data, we applied the positive/unlabeled (PU) learning method, which assumes that only a part of the data is labeled with positive examples. The experimental results show that the PU learning method achieved better performance than the general positive/negative (PN) learning method to classify thoughtful actions given an ambiguous user request.
We propose a novel method for selecting coherent and diverse responses for a given dialogue context. The proposed method re-ranks response candidates generated from conversational models by using event causality relations between events in a dialogue history and response candidates (e.g., “be stressed out” precedes “relieve stress”). We use distributed event representation based on the Role Factored Tensor Model for a robust matching of event causality relations due to limited event causality knowledge of the system. Experimental results showed that the proposed method improved coherency and dialogue continuity of system responses.