Shreya Pathak


pdf bib
CoCoa: An Encoder-Decoder Model for Controllable Code-switched Generation
Sneha Mondal | Ritika . | Shreya Pathak | Preethi Jyothi | Aravindan Raghuveer
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Code-switching has seen growing interest in recent years as an important multilingual NLP phenomenon. Generating code-switched text for data augmentation has been sufficiently well-explored. However, there is no prior work on generating code-switched text with fine-grained control on the degree of code-switching and the lexical choices used to convey formality. We present CoCoa, an encoder-decoder translation model that converts monolingual Hindi text to Hindi-English code-switched text with both encoder-side and decoder-side interventions to achieve fine-grained controllable generation. CoCoa can be invoked at test-time to synthesize code-switched text that is simultaneously faithful to syntactic and lexical attributes relevant to code-switching. CoCoa outputs were subjected to rigorous subjective and objective evaluations. Human evaluations establish that our outputs are of superior quality while being faithful to desired attributes. We show significantly improved BLEU scores when compared with human-generated code-switched references. Compared to competitive baselines, we show 10% reduction in perplexity on a language modeling task and also demonstrate clear improvements on a downstream code-switched sentiment analysis task.


pdf bib
The Effectiveness of Intermediate-Task Training for Code-Switched Natural Language Understanding
Archiki Prasad | Mohammad Ali Rehan | Shreya Pathak | Preethi Jyothi
Proceedings of the 1st Workshop on Multilingual Representation Learning

While recent benchmarks have spurred a lot of new work on improving the generalization of pretrained multilingual language models on multilingual tasks, techniques to improve code-switched natural language understanding tasks have been far less explored. In this work, we propose the use of bilingual intermediate pretraining as a reliable technique to derive large and consistent performance gains using code-switched text on three different NLP tasks: Natural Language Inference (NLI), Question Answering (QA) and Sentiment Analysis (SA). We show consistent performance gains on four different code-switched language-pairs (Hindi-English, Spanish-English, Tamil-English and Malayalam-English) for SA and on Hindi-English for NLI and QA. We also present a code-switched masked language modeling (MLM) pretraining technique that consistently benefits SA compared to standard MLM pretraining using real code-switched text.