Shreya Terupally
2021
Automatic Learning Assistant in Telugu
Meghana Bommadi
|
Shreya Terupally
|
Radhika Mamidi
Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering (DialDoc 2021)
This paper presents a learning assistant that tests one’s knowledge and gives feedback that helps a person learn at a faster pace. A learning assistant (based on automated question generation) has extensive uses in education, information websites, self-assessment, FAQs, testing ML agents, research, etc. Multiple researchers, and companies have worked on Virtual Assistance, but majorly in English. We built our learning assistant for Telugu language to help with teaching in the mother tongue, which is the most efficient way of learning. Our system is built primarily based on Question Generation in Telugu. Many experiments were conducted on Question Generation in English in multiple ways. We have built the first hybrid machine learning and rule-based solution in Telugu, which proves efficient for short stories or short passages in children’s books. Our work covers the fundamental question forms with question types: adjective, yes/no, adverb, verb, when, where, whose, quotative, and quantitative (how many/how much). We constructed rules for question generation using Part of Speech (POS) tags and Universal Dependency (UD) tags along with linguistic information of the surrounding relevant context of the word. We used keyword matching, multilingual sentence embedding to evaluate the answer. Our system is primarily built on question generation in Telugu, and is also capable of evaluating the user’s answers to the generated questions.
2020
Question and Answer pair generation for Telugu short stories
Meghana Bommadi
|
Shreya Terupally
|
Radhika Mamidi
Proceedings of the 17th International Conference on Natural Language Processing (ICON)
Question Answer pair generation is a task that has been worked upon by multiple researchers in many languages. It has been a topic of interest due to its extensive uses in different fields like self assessment, academics, business website FAQs etc. Many experiments were conducted on Question Answering pair generation in English, concentrating on basic Wh-questions with a rule-based approach. We have built the first hybrid machine learning and rule-based solution in Telugu which is efficient for short stories or short passages in children’s books. Our work covers the fundamental question forms with the question types: adjective, yes/no, adverb, verb, when, where, whose, quotative, and quantitative(how many/ how much). We constructed rules for question generation using POS tags and UD tags along with linguistic information of the surrounding context of the word.
Search