Shu Liu


2025

pdf bib
FinDABench: Benchmarking Financial Data Analysis Ability of Large Language Models
Shu Liu | Shangqing Zhao | Chenghao Jia | Xinlin Zhuang | Zhaoguang Long | Jie Zhou | Aimin Zhou | Man Lan | Yang Chong
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of tasks. However, their proficiency and reliability in the specialized domain of financial data analysis, particularly focusing on data-driven thinking, remain uncertain. To bridge this gap, we introduce FinDABench, a comprehensive benchmark designed to evaluate the financial data analysis capabilities of LLMs within this context. The benchmark comprises 15,200 training instances and 8,900 test instances, all meticulously crafted by human experts. FinDABench assesses LLMs across three dimensions: 1) Core Ability, evaluating the models’ ability to perform financial indicator calculation and corporate sentiment risk assessment; 2) Analytical Ability, determining the models’ ability to quickly comprehend textual information and analyze abnormal financial reports; and 3) Technical Ability, examining the models’ use of technical knowledge to address real-world data analysis challenges involving analysis generation and charts visualization from multiple perspectives. We will release FinDABench, and the evaluation scripts at https://github.com/xxx. FinDABench aims to provide a measure for in-depth analysis of LLM abilities and foster the advancement of LLMs in the field of financial data analysis.

2022

pdf bib
A Robustly Optimized BMRC for Aspect Sentiment Triplet Extraction
Shu Liu | Kaiwen Li | Zuhe Li
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Aspect sentiment triplet extraction (ASTE) is a challenging subtask in aspect-based sentiment analysis. It aims to explore the triplets of aspects, opinions and sentiments with complex correspondence from the context. The bidirectional machine reading comprehension (BMRC), can effectively deal with ASTE task, but several problems remains, such as query conflict and probability unilateral decrease. Therefore, this paper presents a robustly optimized BMRC method by incorporating four improvements. The word segmentation is applied to facilitate the semantic learning. Exclusive classifiers are designed to avoid the interference between different queries. A span matching rule is proposed to select the aspects and opinions that better represent the expectations of the model. The probability generation strategy is also introduced to obtain the predicted probability for aspects, opinions and aspect-opinion pairs. We have conducted extensive experiments on multiple benchmark datasets, where our model achieves the state-of-the-art performance.