Shuai Lu


2023

pdf bib
Constructing Multilingual Code Search Dataset Using Neural Machine Translation
Ryo Sekizawa | Nan Duan | Shuai Lu | Hitomi Yanaka
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

Code search is a task to find programming codes that semantically match the given natural language queries. Even though some of the existing datasets for this task are multilingual on the programming language side, their query data are only in English. In this research, we create a multilingual code search dataset in four natural and four programming languages using a neural machine translation model. Using our dataset, we pre-train and fine-tune the Transformer-based models and then evaluate them on multiple code search test sets. Our results show that the model pre-trained with all natural and programming language data has performed best in most cases. By applying back-translation data filtering to our dataset, we demonstrate that the translation quality affects the model’s performance to a certain extent, but the data size matters more.

pdf bib
Code Execution with Pre-trained Language Models
Chenxiao Liu | Shuai Lu | Weizhu Chen | Daxin Jiang | Alexey Svyatkovskiy | Shengyu Fu | Neel Sundaresan | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2023

Code execution is a fundamental aspect of programming language semantics that reflects the exact behavior of the code. However, most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures. In this paper, we investigate how well pre-trained models can understand and perform code execution. We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution, which challenges existing models such as Codex. We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension. We evaluate CodeExecutor on code execution and show its promising performance and limitations. We also demonstrate its potential benefits for code intelligence tasks such as zero-shot code-to-code search and text-to-code generation. Our analysis provides insights into the learning and generalization abilities of pre-trained models for code execution.

pdf bib
Intervention-Based Alignment of Code Search with Execution Feedback
Hojae Han | Minsoo Kim | Seung-won Hwang | Nan Duan | Shuai Lu
Findings of the Association for Computational Linguistics: EMNLP 2023

One of the fundamental goals in code search is to retrieve a functionally correct code for a given natural language query. As annotating for correctness requires executing test cases (i.e. obtaining execution feedback), existing code search training datasets approximate text-code co-occurrences as positive execution feedback. However, this approximation may misalign models’ retrieval decisions from ground-truth correctness. To address such limitation, we propose Code Intervention-based Reinforcement Learning (CIRL) that perturbs training code to result in misalignment (i.e. code intervention), then tests models’ decisions and corrects them with the execution feedback by reinforcement learning. The first technical contribution of CIRL is to induce the execution feedback from perturbation, without actual execution. Secondly, CIRL introduces structural perturbations using abstract syntax trees, going beyond simple lexical changes. Experimental results on various datasets demonstrate the effectiveness of CIRL compared to conventional approaches.

2022

pdf bib
ReACC: A Retrieval-Augmented Code Completion Framework
Shuai Lu | Nan Duan | Hojae Han | Daya Guo | Seung-won Hwang | Alexey Svyatkovskiy
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Code completion, which aims to predict the following code token(s) according to the code context, can improve the productivity of software development. Recent work has proved that statistical language modeling with transformers can greatly improve the performance in the code completion task via learning from large-scale source code datasets. However, current approaches focus only on code context within the file or project, i.e. internal context. Our distinction is utilizing ”external” context, inspired by human behaviors of copying from the related code snippets when writing code. Specifically, we propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval. We adopt a stage-wise training approach that combines a source code retriever and an auto-regressive language model for programming language. We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.

pdf bib
UniXcoder: Unified Cross-Modal Pre-training for Code Representation
Daya Guo | Shuai Lu | Nan Duan | Yanlin Wang | Ming Zhou | Jian Yin
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained models for programming languages have recently demonstrated great success on code intelligence. To support both code-related understanding and generation tasks, recent works attempt to pre-train unified encoder-decoder models. However, such encoder-decoder framework is sub-optimal for auto-regressive tasks, especially code completion that requires a decoder-only manner for efficient inference. In this paper, we present UniXcoder, a unified cross-modal pre-trained model for programming language. The model utilizes mask attention matrices with prefix adapters to control the behavior of the model and leverages cross-modal contents like AST and code comment to enhance code representation. To encode AST that is represented as a tree in parallel, we propose a one-to-one mapping method to transform AST in a sequence structure that retains all structural information from the tree. Furthermore, we propose to utilize multi-modal contents to learn representation of code fragment with contrastive learning, and then align representations among programming languages using a cross-modal generation task. We evaluate UniXcoder on five code-related tasks over nine datasets. To further evaluate the performance of code fragment representation, we also construct a dataset for a new task, called zero-shot code-to-code search. Results show that our model achieves state-of-the-art performance on most tasks and analysis reveals that comment and AST can both enhance UniXcoder.

pdf bib
Towards Compositional Generalization in Code Search
Hojae Han | Seung-won Hwang | Shuai Lu | Nan Duan | Seungtaek Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We study compositional generalization, which aims to generalize on unseen combinations of seen structural elements, for code search. Unlike existing approaches of partially pursuing this goal, we study how to extract structural elements, which we name a template that directly targets compositional generalization. Thus we propose CTBERT, or Code Template BERT, representing codes using automatically extracted templates as building blocks. We empirically validate CTBERT on two public code search benchmarks, AdvTest and CSN. Further, we show that templates are complementary to data flow graphs in GraphCodeBERT, by enhancing structural context around variables.

2021

pdf bib
Long-Range Modeling of Source Code Files with eWASH: Extended Window Access by Syntax Hierarchy
Colin Clement | Shuai Lu | Xiaoyu Liu | Michele Tufano | Dawn Drain | Nan Duan | Neel Sundaresan | Alexey Svyatkovskiy
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Statistical language modeling and translation with transformers have found many successful applications in program understanding and generation tasks, setting high benchmarks for tools in modern software development environments. The finite context window of these neural models means, however, that they will be unable to leverage the entire relevant context of large files and packages for any given task. While there are many efforts to extend the context window, we introduce an architecture-independent approach for leveraging the syntactic hierarchies of source code for incorporating entire file-level context into a fixed-length window. Using concrete syntax trees of each source file we extract syntactic hierarchies and integrate them into context window by selectively removing from view more specific, less relevant scopes for a given task. We evaluate this approach on code generation tasks and joint translation of natural language and source code in Python programming language, achieving a new state-of-the-art in code completion and summarization for Python in the CodeXGLUE benchmark. We also introduce new CodeXGLUE benchmarks for user-experience-motivated tasks: code completion with normalized literals, method body completion/code summarization conditioned on file-level context.

pdf bib
WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach
Junjie Huang | Duyu Tang | Wanjun Zhong | Shuai Lu | Linjun Shou | Ming Gong | Daxin Jiang | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2021

Producing the embedding of a sentence in anunsupervised way is valuable to natural language matching and retrieval problems in practice. In this work, we conduct a thorough examination of pretrained model based unsupervised sentence embeddings. We study on fourpretrained models and conduct massive experiments on seven datasets regarding sentence semantics. We have three main findings. First, averaging all tokens is better than only using [CLS] vector. Second, combining both topand bottom layers is better than only using toplayers. Lastly, an easy whitening-based vector normalization strategy with less than 10 linesof code consistently boosts the performance. The whole project including codes and data is publicly available at https://github.com/Jun-jie-Huang/WhiteningBERT.