Shuai Lu


pdf bib
ReACC: A Retrieval-Augmented Code Completion Framework
Shuai Lu | Nan Duan | Hojae Han | Daya Guo | Seung-won Hwang | Alexey Svyatkovskiy
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Code completion, which aims to predict the following code token(s) according to the code context, can improve the productivity of software development. Recent work has proved that statistical language modeling with transformers can greatly improve the performance in the code completion task via learning from large-scale source code datasets. However, current approaches focus only on code context within the file or project, i.e. internal context. Our distinction is utilizing ”external” context, inspired by human behaviors of copying from the related code snippets when writing code. Specifically, we propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval. We adopt a stage-wise training approach that combines a source code retriever and an auto-regressive language model for programming language. We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.

pdf bib
UniXcoder: Unified Cross-Modal Pre-training for Code Representation
Daya Guo | Shuai Lu | Nan Duan | Yanlin Wang | Ming Zhou | Jian Yin
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained models for programming languages have recently demonstrated great success on code intelligence. To support both code-related understanding and generation tasks, recent works attempt to pre-train unified encoder-decoder models. However, such encoder-decoder framework is sub-optimal for auto-regressive tasks, especially code completion that requires a decoder-only manner for efficient inference. In this paper, we present UniXcoder, a unified cross-modal pre-trained model for programming language. The model utilizes mask attention matrices with prefix adapters to control the behavior of the model and leverages cross-modal contents like AST and code comment to enhance code representation. To encode AST that is represented as a tree in parallel, we propose a one-to-one mapping method to transform AST in a sequence structure that retains all structural information from the tree. Furthermore, we propose to utilize multi-modal contents to learn representation of code fragment with contrastive learning, and then align representations among programming languages using a cross-modal generation task. We evaluate UniXcoder on five code-related tasks over nine datasets. To further evaluate the performance of code fragment representation, we also construct a dataset for a new task, called zero-shot code-to-code search. Results show that our model achieves state-of-the-art performance on most tasks and analysis reveals that comment and AST can both enhance UniXcoder.


pdf bib
Long-Range Modeling of Source Code Files with eWASH: Extended Window Access by Syntax Hierarchy
Colin Clement | Shuai Lu | Xiaoyu Liu | Michele Tufano | Dawn Drain | Nan Duan | Neel Sundaresan | Alexey Svyatkovskiy
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Statistical language modeling and translation with transformers have found many successful applications in program understanding and generation tasks, setting high benchmarks for tools in modern software development environments. The finite context window of these neural models means, however, that they will be unable to leverage the entire relevant context of large files and packages for any given task. While there are many efforts to extend the context window, we introduce an architecture-independent approach for leveraging the syntactic hierarchies of source code for incorporating entire file-level context into a fixed-length window. Using concrete syntax trees of each source file we extract syntactic hierarchies and integrate them into context window by selectively removing from view more specific, less relevant scopes for a given task. We evaluate this approach on code generation tasks and joint translation of natural language and source code in Python programming language, achieving a new state-of-the-art in code completion and summarization for Python in the CodeXGLUE benchmark. We also introduce new CodeXGLUE benchmarks for user-experience-motivated tasks: code completion with normalized literals, method body completion/code summarization conditioned on file-level context.

pdf bib
WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach
Junjie Huang | Duyu Tang | Wanjun Zhong | Shuai Lu | Linjun Shou | Ming Gong | Daxin Jiang | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2021

Producing the embedding of a sentence in anunsupervised way is valuable to natural language matching and retrieval problems in practice. In this work, we conduct a thorough examination of pretrained model based unsupervised sentence embeddings. We study on fourpretrained models and conduct massive experiments on seven datasets regarding sentence semantics. We have three main findings. First, averaging all tokens is better than only using [CLS] vector. Second, combining both topand bottom layers is better than only using toplayers. Lastly, an easy whitening-based vector normalization strategy with less than 10 linesof code consistently boosts the performance. The whole project including codes and data is publicly available at