Shuang Qiu


2024

pdf bib
Arithmetic Control of LLMs for Diverse User Preferences: Directional Preference Alignment with Multi-Objective Rewards
Haoxiang Wang | Yong Lin | Wei Xiong | Rui Yang | Shizhe Diao | Shuang Qiu | Han Zhao | Tong Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fine-grained control over large language models (LLMs) remains a significant challenge, hindering their adaptability to diverse user needs. While Reinforcement Learning from Human Feedback (RLHF) shows promise in aligning LLMs, its reliance on scalar rewards often limits its ability to capture diverse user preferences in real-world applications. To address this limitation, we introduce the Directional Preference Alignment (DPA) framework. Unlike the scalar-reward RLHF, DPA incorporates multi-objective reward modeling to represent diverse preference profiles. Additionally, DPA models user preferences as directions (i.e., unit vectors) in the reward space to achieve user-dependent preference control. Our method involves training a multi-objective reward model and then fine-tuning the LLM with a preference-conditioned variant of Rejection Sampling Finetuning (RSF), an RLHF method adopted by Llama 2. This method enjoys a better performance trade-off across various reward objectives. In comparison with the scalar-reward RLHF, DPA offers users intuitive control over LLM generation: they can arithmetically specify their desired trade-offs (e.g., more helpfulness with less verbosity). We also validate the effectiveness of DPA with real-world alignment experiments on Mistral-7B. Our method provides straightforward arithmetic control over the trade-off between helpfulness and verbosity while maintaining competitive performance with strong baselines such as Direct Preference Optimization (DPO).

2020

pdf bib
Low-Resource Generation of Multi-hop Reasoning Questions
Jianxing Yu | Wei Liu | Shuang Qiu | Qinliang Su | Kai Wang | Xiaojun Quan | Jian Yin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper focuses on generating multi-hop reasoning questions from the raw text in a low resource circumstance. Such questions have to be syntactically valid and need to logically correlate with the answers by deducing over multiple relations on several sentences in the text. Specifically, we first build a multi-hop generation model and guide it to satisfy the logical rationality by the reasoning chain extracted from a given text. Since the labeled data is limited and insufficient for training, we propose to learn the model with the help of a large scale of unlabeled data that is much easier to obtain. Such data contains rich expressive forms of the questions with structural patterns on syntax and semantics. These patterns can be estimated by the neural hidden semi-Markov model using latent variables. With latent patterns as a prior, we can regularize the generation model and produce the optimal results. Experimental results on the HotpotQA data set demonstrate the effectiveness of our model. Moreover, we apply the generated results to the task of machine reading comprehension and achieve significant performance improvements.