Shujin Wu


2024

pdf bib
SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales
Tianyang Xu | Shujin Wu | Shizhe Diao | Xiaoze Liu | Xingyao Wang | Yangyi Chen | Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) often generate inaccurate or fabricated information and generally fail to indicate their confidence, which limits their broader applications. Previous work has elicited confidence from LLMs by direct or self-consistency prompting, or constructing specific datasets for supervised finetuning. The prompting-based approaches have inferior performance, and the training-based approaches are limited to binary or inaccurate group-level confidence estimates. In this work, we present SaySelf, a novel training framework that teaches LLMs to express more fine-grained confidence estimates. In addition, beyond the confidence scores, SaySelf initiates the process of directing LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge and explain their uncertainty. This is achieved by using an LLM to automatically summarize the uncertainties in specific knowledge via natural language. The summarization is based on the analysis of the inconsistency in multiple sampled reasoning chains, and the resulting data is utilized for supervised fine-tuning. Moreover, we utilize reinforcement learning with a meticulously crafted reward function to calibrate the confidence estimates, motivating LLMs to deliver accurate, high-confidence predictions and to penalize overconfidence in erroneous outputs. Experimental results demonstrate the effectiveness of SaySelf in reducing the confidence calibration error and maintaining the task performance. The generated self-reflective rationales are also reasonable and can further contribute to the calibration. The code is made public at https://github.com/xu1868/SaySelf.

pdf bib
MACAROON: Training Vision-Language Models To Be Your Engaged Partners
Shujin Wu | Yi Fung | Sha Li | Yixin Wan | Kai-Wei Chang | Heng Ji
Findings of the Association for Computational Linguistics: EMNLP 2024

Large vision-language models (LVLMs), while proficient in following instructions and responding to diverse questions, invariably generate detailed responses even when questions are ambiguous or unanswerable, leading to hallucinations and bias issues. Thus, it is essential for LVLMs to proactively engage with humans to ask for clarifications or additional information for better responses. In this study, we aim to shift LVLMs from passive answer providers to proactive engaged partners. We begin by establishing a three-tiered hierarchy for questions of invalid, ambiguous, and personalizable nature to measure the proactive engagement capabilities of LVLMs. Utilizing this hierarchy, we create PIE, (ProactIve Engagement Evaluation) through GPT-4o and human annotators, consisting of 853 questions across six distinct, fine-grained question types that are verified by human annotators and accompanied with well-defined metrics. Our evaluations on indicate poor performance of existing LVLMs, with the best-performing open-weights model only achieving an Aggregate Align Rate (AAR) of 0.28. In response, we introduce MACAROON, self-iMaginAtion for ContrAstive pReference OptimizatiON, which instructs LVLMs to autonomously generate contrastive response pairs for unlabeled questions given the task description and human-crafted criteria. Then, the self-imagined data is formatted for conditional reinforcement learning. Experimental results show MACAROON effectively improves LVLMs’ capabilities to be proactively engaged (0.84 AAR) while maintaining comparable performance on general tasks.