Shumin Deng


2023

pdf bib
Editing Large Language Models: Problems, Methods, and Opportunities
Yunzhi Yao | Peng Wang | Bozhong Tian | Siyuan Cheng | Zhoubo Li | Shumin Deng | Huajun Chen | Ningyu Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Despite the ability to train capable LLMs, the methodology for maintaining their relevancy and rectifying errors remains elusive. To this end, the past few years have witnessed a surge in techniques for editing LLMs, the objective of which is to alter the behavior of LLMs efficiently within a specific domain without negatively impacting performance across other inputs. This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs. In particular, we provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal. We also build a new benchmark dataset to facilitate a more robust evaluation and pinpoint enduring issues intrinsic to existing techniques. Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.

pdf bib
Editing Large Language Models
Ningyu Zhang | Yunzhi Yao | Shumin Deng
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Tutorial Abstract

pdf bib
SPEECH: Structured Prediction with Energy-Based Event-Centric Hyperspheres
Shumin Deng | Shengyu Mao | Ningyu Zhang | Bryan Hooi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Event-centric structured prediction involves predicting structured outputs of events. In most NLP cases, event structures are complex with manifold dependency, and it is challenging to effectively represent these complicated structured events. To address these issues, we propose Structured Prediction with Energy-based Event-Centric Hyperspheres (SPEECH). SPEECH models complex dependency among event structured components with energy-based modeling, and represents event classes with simple but effective hyperspheres. Experiments on two unified-annotated event datasets indicate that SPEECH is predominant in event detection and event-relation extraction tasks.

pdf bib
Reasoning with Language Model Prompting: A Survey
Shuofei Qiao | Yixin Ou | Ningyu Zhang | Xiang Chen | Yunzhi Yao | Shumin Deng | Chuanqi Tan | Fei Huang | Huajun Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).

pdf bib
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)
Jing Jiang | David Reitter | Shumin Deng
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL)

2022

pdf bib
LightNER: A Lightweight Tuning Paradigm for Low-resource NER via Pluggable Prompting
Xiang Chen | Lei Li | Shumin Deng | Chuanqi Tan | Changliang Xu | Fei Huang | Luo Si | Huajun Chen | Ningyu Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Most NER methods rely on extensive labeled data for model training, which struggles in the low-resource scenarios with limited training data. Existing dominant approaches usually suffer from the challenge that the target domain has different label sets compared with a resource-rich source domain, which can be concluded as class transfer and domain transfer. In this paper, we propose a lightweight tuning paradigm for low-resource NER via pluggable prompting (LightNER). Specifically, we construct the unified learnable verbalizer of entity categories to generate the entity span sequence and entity categories without any label-specific classifiers, thus addressing the class transfer issue. We further propose a pluggable guidance module by incorporating learnable parameters into the self-attention layer as guidance, which can re-modulate the attention and adapt pre-trained weights. Note that we only tune those inserted module with the whole parameter of the pre-trained language model fixed, thus, making our approach lightweight and flexible for low-resource scenarios and can better transfer knowledge across domains. Experimental results show that LightNER can obtain comparable performance in the standard supervised setting and outperform strong baselines in low-resource settings.

pdf bib
Good Visual Guidance Make A Better Extractor: Hierarchical Visual Prefix for Multimodal Entity and Relation Extraction
Xiang Chen | Ningyu Zhang | Lei Li | Yunzhi Yao | Shumin Deng | Chuanqi Tan | Fei Huang | Luo Si | Huajun Chen
Findings of the Association for Computational Linguistics: NAACL 2022

Multimodal named entity recognition and relation extraction (MNER and MRE) is a fundamental and crucial branch in information extraction. However, existing approaches for MNER and MRE usually suffer from error sensitivity when irrelevant object images incorporated in texts. To deal with these issues, we propose a novel Hierarchical Visual Prefix fusion NeTwork (HVPNeT) for visual-enhanced entity and relation extraction, aiming to achieve more effective and robust performance. Specifically, we regard visual representation as pluggable visual prefix to guide the textual representation for error insensitive forecasting decision. We further propose a dynamic gated aggregation strategy to achieve hierarchical multi-scaled visual features as visual prefix for fusion. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our method, and achieve state-of-the-art performance.

2021

pdf bib
ZJUKLAB at SemEval-2021 Task 4: Negative Augmentation with Language Model for Reading Comprehension of Abstract Meaning
Xin Xie | Xiangnan Chen | Xiang Chen | Yong Wang | Ningyu Zhang | Shumin Deng | Huajun Chen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our systems for the three Subtasks of SemEval Task4: Reading Comprehension of Abstract Meaning (ReCAM). We explain the algorithms used to learn our models and the process of tuning the algorithms and selecting the best model. Inspired by the similarity of the ReCAM task and the language pre-training, we propose a simple yet effective technology, namely, negative augmentation with language model. Evaluation results demonstrate the effectiveness of our proposed approach. Our models achieve the 4th rank on both official test sets of Subtask 1 and Subtask 2 with an accuracy of 87.9% and an accuracy of 92.8%, respectively. We further conduct comprehensive model analysis and observe interesting error cases, which may promote future researches. The code and dataset used in our paper can be found at https://github.com/CheaSim/SemEval2021. The leaderboard can be found at https://competitions.codalab.org/competitions/26153.

pdf bib
OntoED: Low-resource Event Detection with Ontology Embedding
Shumin Deng | Ningyu Zhang | Luoqiu Li | Chen Hui | Tou Huaixiao | Mosha Chen | Fei Huang | Huajun Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Event Detection (ED) aims to identify event trigger words from a given text and classify it into an event type. Most current methods to ED rely heavily on training instances, and almost ignore the correlation of event types. Hence, they tend to suffer from data scarcity and fail to handle new unseen event types. To address these problems, we formulate ED as a process of event ontology population: linking event instances to pre-defined event types in event ontology, and propose a novel ED framework entitled OntoED with ontology embedding. We enrich event ontology with linkages among event types, and further induce more event-event correlations. Based on the event ontology, OntoED can leverage and propagate correlation knowledge, particularly from data-rich to data-poor event types. Furthermore, OntoED can be applied to new unseen event types, by establishing linkages to existing ones. Experiments indicate that OntoED is more predominant and robust than previous approaches to ED, especially in data-scarce scenarios.

pdf bib
MLBiNet: A Cross-Sentence Collective Event Detection Network
Dongfang Lou | Zhilin Liao | Shumin Deng | Ningyu Zhang | Huajun Chen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We consider the problem of collectively detecting multiple events, particularly in cross-sentence settings. The key to dealing with the problem is to encode semantic information and model event inter-dependency at a document-level. In this paper, we reformulate it as a Seq2Seq task and propose a Multi-Layer Bidirectional Network (MLBiNet) to capture the document-level association of events and semantic information simultaneously. Specifically, a bidirectional decoder is firstly devised to model event inter-dependency within a sentence when decoding the event tag vector sequence. Secondly, an information aggregation module is employed to aggregate sentence-level semantic and event tag information. Finally, we stack multiple bidirectional decoders and feed cross-sentence information, forming a multi-layer bidirectional tagging architecture to iteratively propagate information across sentences. We show that our approach provides significant improvement in performance compared to the current state-of-the-art results.

2020

pdf bib
OpenUE: An Open Toolkit of Universal Extraction from Text
Ningyu Zhang | Shumin Deng | Zhen Bi | Haiyang Yu | Jiacheng Yang | Mosha Chen | Fei Huang | Wei Zhang | Huajun Chen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Natural language processing covers a wide variety of tasks with token-level or sentence-level understandings. In this paper, we provide a simple insight that most tasks can be represented in a single universal extraction format. We introduce a prototype model and provide an open-source and extensible toolkit called OpenUE for various extraction tasks. OpenUE allows developers to train custom models to extract information from the text and supports quick model validation for researchers. Besides, OpenUE provides various functional modules to maintain sufficient modularity and extensibility. Except for the toolkit, we also deploy an online demo with restful APIs to support real-time extraction without training and deploying. Additionally, the online system can extract information in various tasks, including relational triple extraction, slot & intent detection, event extraction, and so on. We release the source code, datasets, and pre-trained models to promote future researches in http://github.com/zjunlp/openue.

pdf bib
Summarizing Chinese Medical Answer with Graph Convolution Networks and Question-focused Dual Attention
Ningyu Zhang | Shumin Deng | Juan Li | Xi Chen | Wei Zhang | Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2020

Online search engines are a popular source of medical information for users, where users can enter questions and obtain relevant answers. It is desirable to generate answer summaries for online search engines, particularly summaries that can reveal direct answers to questions. Moreover, answer summaries are expected to reveal the most relevant information in response to questions; hence, the summaries should be generated with a focus on the question, which is a challenging topic-focused summarization task. In this paper, we propose an approach that utilizes graph convolution networks and question-focused dual attention for Chinese medical answer summarization. We first organize the original long answer text into a medical concept graph with graph convolution networks to better understand the internal structure of the text and the correlation between medical concepts. Then, we introduce a question-focused dual attention mechanism to generate summaries relevant to questions. Experimental results demonstrate that the proposed model can generate more coherent and informative summaries compared with baseline models.

pdf bib
Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot Relational Triple Extraction
Haiyang Yu | Ningyu Zhang | Shumin Deng | Hongbin Ye | Wei Zhang | Huajun Chen
Proceedings of the 28th International Conference on Computational Linguistics

Current supervised relational triple extraction approaches require huge amounts of labeled data and thus suffer from poor performance in few-shot settings. However, people can grasp new knowledge by learning a few instances. To this end, we take the first step to study the few-shot relational triple extraction, which has not been well understood. Unlike previous single-task few-shot problems, relational triple extraction is more challenging as the entities and relations have implicit correlations. In this paper, We propose a novel multi-prototype embedding network model to jointly extract the composition of relational triples, namely, entity pairs and corresponding relations. To be specific, we design a hybrid prototypical learning mechanism that bridges text and knowledge concerning both entities and relations. Thus, implicit correlations between entities and relations are injected. Additionally, we propose a prototype-aware regularization to learn more representative prototypes. Experimental results demonstrate that the proposed method can improve the performance of the few-shot triple extraction.

2019

pdf bib
Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks
Ningyu Zhang | Shumin Deng | Zhanlin Sun | Guanying Wang | Xi Chen | Wei Zhang | Huajun Chen
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate “few-shot” models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.

2018

pdf bib
Attention-Based Capsule Networks with Dynamic Routing for Relation Extraction
Ningyu Zhang | Shumin Deng | Zhanling Sun | Xi Chen | Wei Zhang | Huajun Chen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

A capsule is a group of neurons, whose activity vector represents the instantiation parameters of a specific type of entity. In this paper, we explore the capsule networks used for relation extraction in a multi-instance multi-label learning framework and propose a novel neural approach based on capsule networks with attention mechanisms. We evaluate our method with different benchmarks, and it is demonstrated that our method improves the precision of the predicted relations. Particularly, we show that capsule networks improve multiple entity pairs relation extraction.