Machine Translation (MT) has developed rapidly since the release of Large Language Models and current MT evaluation is performed through comparison with reference human translations or by predicting quality scores from human-labeled data. However, these mainstream evaluation methods mainly focus on fluency and factual reliability, whilst paying little attention to figurative quality. In this paper, we investigate the figurative quality of MT and propose a set of human evaluation metrics focused on the translation of figurative language. We additionally present a multilingual parallel metaphor corpus generated by post-editing. Our evaluation protocol is designed to estimate four aspects of MT: Metaphorical Equivalence, Emotion, Authenticity, and Quality. In doing so, we observe that translations of figurative expressions display different traits from literal ones.
One noticeable trend in metaphor detection is the embrace of linguistic theories such as the metaphor identification procedure (MIP) for model architecture design. While MIP clearly defines that the metaphoricity of a lexical unit is determined based on the contrast between its contextual meaning and its basic meaning, existing work does not strictly follow this principle, typically using the aggregated meaning to approximate the basic meaning of target words. In this paper, we propose a novel metaphor detection method, which models the basic meaning of the word based on literal annotation from the training set, and then compares this with the contextual meaning in a target sentence to identify metaphors. Empirical results show that our method outperforms the state-of-the-art method significantly by 1.0% in F1 score. Moreover, our performance even reaches the theoretical upper bound on the VUA18 benchmark for targets with basic annotations, which demonstrates the importance of modelling basic meanings for metaphor detection.
We propose a novel RoBERTa-based model, RoPPT, which introduces a target-oriented parse tree structure in metaphor detection. Compared to existing models, RoPPT focuses on semantically relevant information and achieves the state-of-the-art on several main metaphor datasets. We also compare our approach against several popular denoising and pruning methods, demonstrating the effectiveness of our approach in context denoising. Our code and dataset can be found at
https://github.com/MajiBear000/RoPPT.
In this paper, we propose FrameBERT, a BERT-based model that can explicitly learn and incorporate FrameNet Embeddings for concept-level metaphor detection. FrameBERT not only achieves better or comparable performance to the state-of-the-art, but also is more explainable and interpretable compared to existing models, attributing to its ability of accounting for external knowledge of FrameNet.
Abstracts derived from biomedical literature possess distinct domain-specific characteristics, including specialised writing styles and biomedical terminologies, which necessitate a deep understanding of the related literature. As a result, existing language models struggle to generate technical summaries that are on par with those produced by biomedical experts, given the absence of domain-specific background knowledge. This paper aims to enhance the performance of language models in biomedical abstractive summarisation by aggregating knowledge from external papers cited within the source article. We propose a novel attention-based citation aggregation model that integrates domain-specific knowledge from citation papers, allowing neural networks to generate summaries by leveraging both the paper content and relevant knowledge from citation papers. Furthermore, we construct and release a large-scale biomedical summarisation dataset that serves as a foundation for our research. Extensive experiments demonstrate that our model outperforms state-of-the-art approaches and achieves substantial improvements in abstractive biomedical text summarisation.