Shuo Lei


2023

pdf bib
Beyond Layout Embedding: Layout Attention with Gaussian Biases for Structured Document Understanding
Xi Zhu | Xue Han | Shuyuan Peng | Shuo Lei | Chao Deng | Junlan Feng
Findings of the Association for Computational Linguistics: EMNLP 2023

Effectively encoding layout information is a central problem in structured document understanding. Most existing methods rely heavily on millions of trainable parameters to learn the layout features of each word from Cartesian coordinates. However, two unresolved questions remain: (1) Is the Cartesian coordinate system the optimal choice for layout modeling? (2) Are massive learnable parameters truly necessary for layout representation? In this paper, we address these questions by proposing Layout Attention with Gaussian Biases (LAGaBi): Firstly, we find that polar coordinates provide a superior choice over Cartesian coordinates as they offer a measurement of both distance and angle between word pairs, capturing relative positions more effectively. Furthermore, by feeding the distances and angles into 2-D Gaussian kernels, we model intuitive inductive layout biases, i.e., the words closer within a document should receive more attention, which will act as the attention biases to revise the textual attention distribution. LAGaBi is model-agnostic and language-independent, which can be applied to a range of transformer-based models, such as the text pre-training models from the BERT series and the LayoutLM series that incorporate visual features. Experimental results on three widely used benchmarks demonstrate that, despite reducing the number of layout parameters from millions to 48, LAGaBi achieves competitive or even superior performance.

pdf bib
TART: Improved Few-shot Text Classification Using Task-Adaptive Reference Transformation
Shuo Lei | Xuchao Zhang | Jianfeng He | Fanglan Chen | Chang-Tien Lu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieve state-of-the-art performance. However, the performance of existing approaches heavily depends on the inter-class variance of the support set. As a result, it can perform well on tasks when the semantics of sampled classes are distinct while failing to differentiate classes with similar semantics. In this paper, we propose a novel Task-Adaptive Reference Transformation (TART) network, aiming to enhance the generalization by transforming the class prototypes to per-class fixed reference points in task-adaptive metric spaces. To further maximize divergence between transformed prototypes in task-adaptive metric spaces, TART introduces a discriminative reference regularization among transformed prototypes. Extensive experiments are conducted on four benchmark datasets and our method demonstrates clear superiority over the state-of-the-art models in all the datasets. In particular, our model surpasses the state-of-the-art method by 7.4% and 5.4% in 1-shot and 5-shot classification on the 20 Newsgroups dataset, respectively.

2022

pdf bib
Uncertainty-Aware Cross-Lingual Transfer with Pseudo Partial Labels
Shuo Lei | Xuchao Zhang | Jianfeng He | Fanglan Chen | Chang-Tien Lu
Findings of the Association for Computational Linguistics: NAACL 2022

Large-scale multilingual pre-trained language models have achieved remarkable performance in zero-shot cross-lingual tasks. A recent study has demonstrated the effectiveness of self-learning-based approach on cross-lingual transfer, where only unlabeled data of target languages are required, without any efforts to annotate gold labels for target languages. However, it suffers from noisy training due to the incorrectly pseudo-labeled samples. In this work, we propose an uncertainty-aware Cross-Lingual Transfer framework with Pseudo-Partial-Label (CLTP)1 to maximize the utilization of unlabeled data by reducing the noise introduced in the training phase. To estimate pseudo-partial-label for each unlabeled data, we propose a novel estimation method, considering both prediction confidence and the limitation to the number of similar labels. Extensive experiments are conducted on two cross-lingual tasks, including Named Entity Recognition (NER) and Natural Language Inference (NLI) across 40 languages, which shows our method can outperform the baselines on both high-resource and low-resource languages, such as 6.9 on Kazakh (kk) and 5.2 Marathi (mr) for NER.

2020

pdf bib
Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He | Xuchao Zhang | Shuo Lei | Zhiqian Chen | Fanglan Chen | Abdulaziz Alhamadani | Bei Xiao | ChangTien Lu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The uncertainty measurement of classified results is especially important in areas requiring limited human resources for higher accuracy. For instance, data-driven algorithms diagnosing diseases need accurate uncertainty score to decide whether additional but limited quantity of experts are needed for rectification. However, few uncertainty models focus on improving the performance of text classification where human resources are involved. To achieve this, we aim at generating accurate uncertainty score by improving the confidence of winning scores. Thus, a model called MSD, which includes three independent components as “mix-up”, “self-ensembling”, “distinctiveness score”, is proposed to improve the accuracy of uncertainty score by reducing the effect of overconfidence of winning score and considering the impact of different categories of uncertainty simultaneously. MSD can be applied with different Deep Neural Networks. Extensive experiments with ablation setting are conducted on four real-world datasets, on which, competitive results are obtained.