Shuyun Tang


2024

pdf bib
RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
Xuanwang Zhang | Yun-Ze Song | Yidong Wang | Shuyun Tang | Xinfeng Li | Zhengran Zeng | Zhen Wu | Wei Ye | Wenyuan Xu | Yue Zhang | Xinyu Dai | Shikun Zhang | Qingsong Wen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention. However, even the most advanced LLMs face challenges such as hallucinations and real-time updating of their knowledge. Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG). However, two key issues constrained the development of RAG. First, there is a growing lack of comprehensive and fair comparisons between novel RAG algorithms. Second, open-source tools such as LlamaIndex and LangChain employ high-level abstractions, which results in a lack of transparency and limits the ability to develop novel algorithms and evaluation metrics. To close this gap, we introduce RAGLAB, a modular and research-oriented open-source library. RAGLAB reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms. Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks. With RAGLAB, researchers can efficiently compare the performance of various algorithms and develop novel algorithms.