Shyambabu Pandey
2023
Bi-Quantum Long Short-Term Memory for Part-of-Speech Tagging
Shyambabu Pandey
|
Partha Pakray
Proceedings of the 20th International Conference on Natural Language Processing (ICON)
Natural language processing (NLP) is a subfield of artificial intelligence that enables computer systems to understand and generate human language. NLP tasks involved machine learning and deep learning methods for processing the data. Traditional applications utilize massive datasets and resources to perform NLP applications, which is challenging for classical systems. On the other hand, Quantum computing has emerged as a promising technology with the potential to address certain computational problems more efficiently than classical computing in specific domains. In recent years, researchers have started exploring the application of quantum computing techniques to NLP tasks. In this paper, we propose a quantum-based deep learning model, Bi-Quantum long short-term memory (BiQLSTM). We apply POS tagging using the proposed model on social media code-mixed datasets.
2022
CNLP-NITS-PP at MixMT 2022: Hinglish-English Code-Mixed Machine Translation
Sahinur Rahman Laskar
|
Rahul Singh
|
Shyambabu Pandey
|
Riyanka Manna
|
Partha Pakray
|
Sivaji Bandyopadhyay
Proceedings of the Seventh Conference on Machine Translation (WMT)
The mixing of two or more languages in speech or text is known as code-mixing. In this form of communication, users mix words and phrases from multiple languages. Code-mixing is very common in the context of Indian languages due to the presence of multilingual societies. The probability of the existence of code-mixed sentences in almost all Indian languages since in India English is the dominant language for social media textual communication platforms. We have participated in the WMT22 shared task of code-mixed machine translation with the team name: CNLP-NITS-PP. In this task, we have prepared a synthetic Hinglish–English parallel corpus using transliteration of original Hindi sentences to tackle the limitation of the parallel corpus, where, we mainly considered sentences that have named-entity (proper noun) from the available English-Hindi parallel corpus. With the addition of synthetic bi-text data to the original parallel corpus (train set), our transformer-based neural machine translation models have attained recall-oriented understudy for gisting evaluation (ROUGE-L) scores of 0.23815, 0.33729, and word error rate (WER) scores of 0.95458, 0.88451 at Sub-Task-1 (English-to-Hinglish) and Sub-Task-2 (Hinglish-to-English) for test set results respectively.