Sibel Adali


2025

pdf bib
ConShift: Sense-based Language Variation Analysis using Flexible Alignment
Clare Arrington | Mauricio Gruppi | Sibel Adali
Findings of the Association for Computational Linguistics: NAACL 2025

We introduce ConShift, a family of alignment-based algorithms that enable semantic variation analysis at the sense-level. Using independent senses of words induced from the context of tokens in two corpora, sense-enriched word embeddings are aligned using self-supervision and a flexible matching mechanism. This approach makes it possible to test for multiple sense-level language variations such as sense gain/presence, loss/absence and broadening/narrowing, while providing explanation of the changes through visualization of related concepts. We illustrate the utility of the method with sense- and word-level semantic shift detection results for multiple evaluation datasets in diachronic settings and dialect variation in the synchronic setting.

2020

pdf bib
SChME at SemEval-2020 Task 1: A Model Ensemble for Detecting Lexical Semantic Change
Maurício Gruppi | Sibel Adali | Pin-Yu Chen
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes SChME (Semantic Change Detection with Model Ensemble), a method used in SemEval-2020 Task 1 on unsupervised detection of lexical semantic change. SChME uses a model ensemble combining signals distributional models (word embeddings) and word frequency where each model casts a vote indicating the probability that a word suffered semantic change according to that feature. More specifically, we combine cosine distance of word vectors combined with a neighborhood-based metric we named Mapped Neighborhood Distance (MAP), and a word frequency differential metric as input signals to our model. Additionally, we explore alignment-based methods to investigate the importance of the landmarks used in this process. Our results show evidence that the number of landmarks used for alignment has a direct impact on the predictive performance of the model. Moreover, we show that languages that suffer less semantic change tend to benefit from using a large number of landmarks, whereas languages with more semantic change benefit from a more careful choice of landmark number for alignment.