Siddh Singhal


2025

pdf bib
IITR-CIOL@NLU of Devanagari Script Languages 2025: Multilingual Hate Speech Detection and Target Identification in Devanagari-Scripted Languages
Siddhant Gupta | Siddh Singhal | Azmine Toushik Wasi
Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)

This work focuses on two subtasks related to hate speech detection and target identification in Devanagari-scripted languages, specifically Hindi, Marathi, Nepali, Bhojpuri, and Sanskrit. Subtask B involves detecting hate speech in online text, while Subtask C requires identifying the specific targets of hate speech, such as individuals, organizations, or communities. We develop a deep neural network built on the pretrained multilingual transformer model ‘ia-multilingual-transliterated-roberta’ by IBM, optimized for classification tasks in multilingual and transliterated contexts. The model leverages contextualized embeddings to handle linguistic diversity, with a classifier head for binary classification. We received 88.40% accuracy in Subtask B and 66.11% accuracy in Subtask C, in the test set.