Sima Sharifirad


Learning and Understanding Different Categories of Sexism Using Convolutional Neural Network’s Filters
Sima Sharifirad | Alon Jacovi
Proceedings of the 2019 Workshop on Widening NLP

Sexism is very common in social media and makes the boundaries of free speech tighter for female users. Automatically flagging and removing sexist content requires niche identification and description of the categories. In this study, inspired by social science work, we propose three categories of sexism toward women as follows: “Indirect sexism”, “Sexual sexism” and “Physical sexism”. We build classifiers such as Convolutional Neural Network (CNN) to automatically detect different types of sexism and address problems of annotation. Even though inherent non-interpretability of CNN is a challenge for users who detect sexism, as the reason classifying a given speech instance with regard to sexism is difficult to glance from a CNN. However, recent research developed interpretable CNN filters for text data. In a CNN, filters followed by different activation patterns along with global max-pooling can help us tease apart the most important ngrams from the rest. In this paper, we interpret a CNN model trained to classify sexism in order to understand different categories of sexism by detecting semantic categories of ngrams and clustering them. Then, these ngrams in each category are used to improve the performance of the classification task. It is a preliminary work using machine learning and natural language techniques to learn the concept of sexism and distinguishes itself by looking at more precise categories of sexism in social media along with an in-depth investigation of CNN’s filters.

Using Attention-based Bidirectional LSTM to Identify Different Categories of Offensive Language Directed Toward Female Celebrities
Sima Sharifirad | Stan Matwin
Proceedings of the 2019 Workshop on Widening NLP

Social media posts reflect the emotions, intentions and mental state of the users. Twitter users who harass famous female figures may do so with different intentions and intensities. Recent studies have published datasets focusing on different types of online harassment, vulgar language, and emotional intensities. We trained, validate and test our proposed model, attention-based bidirectional neural network, on the three datasets:”online harassment”, “vulgar language” and “valance” and achieved state of the art performance in two of the datasets. We report F1 score for each dataset separately along with the final precision, recall and macro-averaged F1 score. In addition, we identify ten female figures from different professions and racial backgrounds who have experienced harassment on Twitter. We tested the trained models on ten collected corpuses each related to one famous female figure to predict the type of harassing language, the type of vulgar language and the degree of intensity of language occurring on their social platforms. Interestingly, the achieved results show different patterns of linguistic use targeting different racial background and occupations. The contribution of this study is two-fold. From the technical perspective, our proposed methodology is shown to be effective with a good margin in comparison to the previous state-of-the-art results on one of the two available datasets. From the social perspective, we introduce a methodology which can unlock facts about the nature of offensive language targeting women on online social platforms. The collected dataset will be shared publicly for further investigation.


pdf bib
Boosting Text Classification Performance on Sexist Tweets by Text Augmentation and Text Generation Using a Combination of Knowledge Graphs
Sima Sharifirad | Borna Jafarpour | Stan Matwin
Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)

Text classification models have been heavily utilized for a slew of interesting natural language processing problems. Like any other machine learning model, these classifiers are very dependent on the size and quality of the training dataset. Insufficient and imbalanced datasets will lead to poor performance. An interesting solution to poor datasets is to take advantage of the world knowledge in the form of knowledge graphs to improve our training data. In this paper, we use ConceptNet and Wikidata to improve sexist tweet classification by two methods (1) text augmentation and (2) text generation. In our text generation approach, we generate new tweets by replacing words using data acquired from ConceptNet relations in order to increase the size of our training set, this method is very helpful with frustratingly small datasets, preserves the label and increases diversity. In our text augmentation approach, the number of tweets remains the same but their words are augmented (concatenation) with words extracted from their ConceptNet relations and their description extracted from Wikidata. In our text augmentation approach, the number of tweets in each class remains the same but the range of each tweet increases. Our experiments show that our approach improves sexist tweet classification significantly in our entire machine learning models. Our approach can be readily applied to any other small dataset size like hate speech or abusive language and text classification problem using any machine learning model.