Simon Lin


pdf bib
COUGH: A Challenge Dataset and Models for COVID-19 FAQ Retrieval
Xinliang Frederick Zhang | Heming Sun | Xiang Yue | Simon Lin | Huan Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We present a large, challenging dataset, COUGH, for COVID-19 FAQ retrieval. Similar to a standard FAQ dataset, COUGH consists of three parts: FAQ Bank, Query Bank and Relevance Set. The FAQ Bank contains ~16K FAQ items scraped from 55 credible websites (e.g., CDC and WHO). For evaluation, we introduce Query Bank and Relevance Set, where the former contains 1,236 human-paraphrased queries while the latter contains ~32 human-annotated FAQ items for each query. We analyze COUGH by testing different FAQ retrieval models built on top of BM25 and BERT, among which the best model achieves 48.8 under P@5, indicating a great challenge presented by COUGH and encouraging future research for further improvement. Our COUGH dataset is available at


pdf bib
Rationalizing Medical Relation Prediction from Corpus-level Statistics
Zhen Wang | Jennifer Lee | Simon Lin | Huan Sun
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Nowadays, the interpretability of machine learning models is becoming increasingly important, especially in the medical domain. Aiming to shed some light on how to rationalize medical relation prediction, we present a new interpretable framework inspired by existing theories on how human memory works, e.g., theories of recall and recognition. Given the corpus-level statistics, i.e., a global co-occurrence graph of a clinical text corpus, to predict the relations between two entities, we first recall rich contexts associated with the target entities, and then recognize relational interactions between these contexts to form model rationales, which will contribute to the final prediction. We conduct experiments on a real-world public clinical dataset and show that our framework can not only achieve competitive predictive performance against a comprehensive list of neural baseline models, but also present rationales to justify its prediction. We further collaborate with medical experts deeply to verify the usefulness of our model rationales for clinical decision making.

pdf bib
Sequence-to-Set Semantic Tagging for Complex Query Reformulation and Automated Text Categorization in Biomedical IR using Self-Attention
Manirupa Das | Juanxi Li | Eric Fosler-Lussier | Simon Lin | Steve Rust | Yungui Huang | Rajiv Ramnath
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing

Novel contexts, comprising a set of terms referring to one or more concepts, may often arise in complex querying scenarios such as in evidence-based medicine (EBM) involving biomedical literature. These may not explicitly refer to entities or canonical concept forms occurring in a fact-based knowledge source, e.g. the UMLS ontology. Moreover, hidden associations between related concepts meaningful in the current context, may not exist within a single document, but across documents in the collection. Predicting semantic concept tags of documents can therefore serve to associate documents related in unseen contexts, or categorize them, in information filtering or retrieval scenarios. Thus, inspired by the success of sequence-to-sequence neural models, we develop a novel sequence-to-set framework with attention, for learning document representations in a unique unsupervised setting, using no human-annotated document labels or external knowledge resources and only corpus-derived term statistics to drive the training, that can effect term transfer within a corpus for semantically tagging a large collection of documents. Our sequence-to-set modeling approach to predict semantic tags, gives to the best of our knowledge, the state-of-the-art for both, an unsupervised query expansion (QE) task for the TREC CDS 2016 challenge dataset when evaluated on an Okapi BM25–based document retrieval system; and also over the MLTM system baseline baseline (Soleimani and Miller, 2016), for both supervised and semi-supervised multi-label prediction tasks on the and Ohsumed datasets. We make our code and data publicly available.


pdf bib
Phrase2VecGLM: Neural generalized language model–based semantic tagging for complex query reformulation in medical IR
Manirupa Das | Eric Fosler-Lussier | Simon Lin | Soheil Moosavinasab | David Chen | Steve Rust | Yungui Huang | Rajiv Ramnath
Proceedings of the BioNLP 2018 workshop

In this work, we develop a novel, completely unsupervised, neural language model-based document ranking approach to semantic tagging of documents, using the document to be tagged as a query into the GLM to retrieve candidate phrases from top-ranked related documents, thus associating every document with novel related concepts extracted from the text. For this we extend the word embedding-based general language model due to Ganguly et al 2015, to employ phrasal embeddings, and use the semantic tags thus obtained for downstream query expansion, both directly and in feedback loop settings. Our method, evaluated using the TREC 2016 clinical decision support challenge dataset, shows statistically significant improvement not only over various baselines that use standard MeSH terms and UMLS concepts for query expansion, but also over baselines using human expert–assigned concept tags for the queries, run on top of a standard Okapi BM25–based document retrieval system.