Simon See


2022

pdf bib
PseudoReasoner: Leveraging Pseudo Labels for Commonsense Knowledge Base Population
Tianqing Fang | Quyet V. Do | Hongming Zhang | Yangqiu Song | Ginny Y. Wong | Simon See
Findings of the Association for Computational Linguistics: EMNLP 2022

Commonsense Knowledge Base (CSKB) Population aims at reasoning over unseen entities and assertions on CSKBs, and is an important yet hard commonsense reasoning task. One challenge is that it requires out-of-domain generalization ability as the source CSKB for training is of a relatively smaller scale (1M) while the whole candidate space for population is way larger (200M). We propose PseudoReasoner, a semi-supervised learning framework for CSKB population that uses a teacher model pre-trained on CSKBs to provide pseudo labels on the unlabeled candidate dataset for a student model to learn from. The teacher can be a generative model rather than restricted to discriminative models as previous works.In addition, we design a new filtering procedure for pseudo labels based on influence function and the student model’s prediction to further improve the performance. The framework can improve the backbone model KG-BERT (RoBERTa-large) by 3.3 points on the overall performance and especially, 5.3 points on the out-of-domain performance, and achieves the state-of-the-art. The codes will be made public on acceptance. Codes and data are available at https://github.com/HKUST-KnowComp/PseudoReasoner.

pdf bib
SubeventWriter: Iterative Sub-event Sequence Generation with Coherence Controller
Zhaowei Wang | Hongming Zhang | Tianqing Fang | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose a new task of sub-event generation for an unseen process to evaluate the understanding of the coherence of sub-event actions and objects. To solve the problem, we design SubeventWriter, a sub-event sequence generation framework with a coherence controller. Given an unseen process, the framework can iteratively construct the sub-event sequence by generating one sub-event at each iteration. We also design a very effective coherence controller to decode more coherent sub-events. As our extensive experiments and analysis indicate, SubeventWriter can generate more reliable and meaningful sub-event sequences for unseen processes.

pdf bib
Complex Hyperbolic Knowledge Graph Embeddings with Fast Fourier Transform
Huiru Xiao | Xin Liu | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models.