Siru Ouyang


2024

pdf bib
Temperature-Centric Investigation of Speculative Decoding with Knowledge Distillation
Siru Ouyang | Shuohang Wang | Minhao Jiang | Ming Zhong | Donghan Yu | Jiawei Han | Yelong Shen
Findings of the Association for Computational Linguistics: EMNLP 2024

Speculative decoding stands as a pivotal technique to expedite inference in autoregressive (large) language models. This method employs a smaller *draft* model to speculate a block of tokens, which the *target* model then evaluates for acceptance. Despite a wealth of studies aimed at increasing the efficiency of speculative decoding, the influence of generation configurations on the decoding process remains poorly understood, especially concerning decoding temperatures. This paper delves into the effects of decoding temperatures on speculative decoding’s efficacy. Beginning with knowledge distillation (KD), we first highlight the challenge of decoding at higher temperatures, and demonstrate KD in a consistent temperature setting could be a remedy. We also investigate the effects of out-of-domain testing sets with out-of-range temperatures. Building upon these findings, we take an initial step to further the speedup for speculative decoding, particularly in a high-temperature generation setting. Our work offers new insights into how generation configurations drastically affect the performance of speculative decoding, and underscores the need for developing methods that focus on diverse decoding configurations.

pdf bib
ActionIE: Action Extraction from Scientific Literature with Programming Languages
Xianrui Zhong | Yufeng Du | Siru Ouyang | Ming Zhong | Tingfeng Luo | Qirong Ho | Hao Peng | Heng Ji | Jiawei Han
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Extraction of experimental procedures from human language in scientific literature and patents into actionable sequences in robotics language holds immense significance in scientific domains. Such an action extraction task is particularly challenging given the intricate details and context-dependent nature of the instructions, especially in fields like chemistry where reproducibility is paramount. In this paper, we introduce ActionIE, a method that leverages Large Language Models (LLMs) to bridge this divide by converting actions written in natural language into executable Python code. This enables us to capture the entities of interest, and the relationship between each action, given the features of Programming Languages. Utilizing linguistic cues identified by frequent patterns, ActionIE provides an improved mechanism to discern entities of interest. While our method is broadly applicable, we exemplify its power in the domain of chemical literature, wherein we focus on extracting experimental procedures for chemical synthesis. The code generated by our method can be easily transformed into robotics language which is in high demand in scientific fields. Comprehensive experiments demonstrate the superiority of our method. In addition, we propose a graph-based metric to more accurately reflect the precision of extraction. We also develop a dataset to address the scarcity of scientific literature occurred in existing datasets.

2023

pdf bib
Compositional Data Augmentation for Abstractive Conversation Summarization
Siru Ouyang | Jiaao Chen | Jiawei Han | Diyi Yang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent abstractive conversation summarization systems generally rely on large-scale datasets with annotated summaries. However, collecting and annotating these conversations can be a time-consuming and labor-intensive task. To address this issue, in this work, we present a sub-structure level compositional data augmentation method, Compo, for generating diverse and high-quality pairs of conversations and summaries. Specifically, Compo first extracts conversation structures like topic splits and action triples as basic units. Then we organize these semantically meaningful conversation snippets compositionally to create new training instances. Additionally, we explore noise-tolerant settings in both self-training and joint-training paradigms to make the most of these augmented samples. Our experiments on benchmark datasets, SAMSum and DialogSum, show that Compo substantially outperforms prior baseline methods by achieving a nearly 10% increase of ROUGE scores with limited data. Code is available at https://github.com/ozyyshr/Compo.

pdf bib
Towards End-to-End Open Conversational Machine Reading
Sizhe Zhou | Siru Ouyang | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: EACL 2023

In open-retrieval conversational machine reading (OR-CMR) task, machines are required to do multi-turn question answering given dialogue history and a textual knowledge base. Existing works generally utilize two independent modules to approach this problem’s two successive sub-tasks: first with a hard-label decision making and second with a question generation aided by various entailment reasoning methods. Such usual cascaded modeling is vulnerable to error propagation and prevents the two sub-tasks from being consistently optimized. In this work, we instead model OR-CMR as a unified text-to-text task in a fully end-to-end style. Experiments on the ShARC and OR-ShARC dataset show the effectiveness of our proposed end-to-end framework on both sub-tasks by a large margin, achieving new state-of-the-art results. Further ablation studies support that our framework can generalize to different backbone models.

pdf bib
ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision
Ming Zhong | Siru Ouyang | Minhao Jiang | Vivian Hu | Yizhu Jiao | Xuan Wang | Jiawei Han
Findings of the Association for Computational Linguistics: ACL 2023

Structured chemical reaction information plays a vital role for chemists engaged in laboratory work and advanced endeavors such as computer-aided drug design. Despite the importance of extracting structured reactions from scientific literature, data annotation for this purpose is cost-prohibitive due to the significant labor required from domain experts. Consequently, the scarcity of sufficient training data poses an obstacle to the progress of related models in this domain. In this paper, we propose ReactIE, which combines two weakly supervised approaches for pre-training. Our method utilizes frequent patterns within the text as linguistic cues to identify specific characteristics of chemical reactions. Additionally, we adopt synthetic data from patent records as distant supervision to incorporate domain knowledge into the model. Experiments demonstrate that ReactIE achieves substantial improvements and outperforms all existing baselines.

pdf bib
The Shifted and The Overlooked: A Task-oriented Investigation of User-GPT Interactions
Siru Ouyang | Shuohang Wang | Yang Liu | Ming Zhong | Yizhu Jiao | Dan Iter | Reid Pryzant | Chenguang Zhu | Heng Ji | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent progress in Large Language Models (LLMs) has produced models that exhibit remarkable performance across a variety of NLP tasks. However, it remains unclear whether the existing focus of NLP research accurately captures the genuine requirements of human users. This paper provides a comprehensive analysis of the divergence between academic research in NLP and the needs of real-world NLP applications via a large-scale collection of user-GPT conversations. We analyze a large-scale collection of real user queries to GPT. We compare these queries against existing NLP benchmark tasks and identify a significant gap between the tasks that users frequently request from LLMs and the tasks that are commonly studied in academic research. For example, we find that tasks such as “design” and “planning” are prevalent in user interactions but largely neglected or different from traditional NLP benchmarks. We investigate these overlooked tasks, dissect the practical challenges, and provide insights toward a roadmap to make LLMs better aligned with user needs.

pdf bib
Instruct and Extract: Instruction Tuning for On-Demand Information Extraction
Yizhu Jiao | Ming Zhong | Sha Li | Ruining Zhao | Siru Ouyang | Heng Ji | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models with instruction-following capabilities open the door to a wider group of users. However, when it comes to information extraction – a classic task in natural language processing – most task-specific systems cannot align well with long-tail ad hoc extraction use cases for non-expert users. To address this, we propose a novel paradigm, termed On-Demand Information Extraction, to fulfill the personalized demands of real-world users. Our task aims to follow the instructions to extract the desired content from the associated text and present it in a structured tabular format. The table headers can either be user-specified or inferred contextually by the model. To facilitate research in this emerging area, we present a benchmark named InstructIE, inclusive of both automatically generated training data, as well as the human-annotated test set. Building on InstructIE, we further develop an On-Demand Information Extractor, ODIE. Comprehensive evaluations on our benchmark reveal that ODIE substantially outperforms the existing open-source models of similar size.

pdf bib
Reaction Miner: An Integrated System for Chemical Reaction Extraction from Textual Data
Ming Zhong | Siru Ouyang | Yizhu Jiao | Priyanka Kargupta | Leo Luo | Yanzhen Shen | Bobby Zhou | Xianrui Zhong | Xuan Liu | Hongxiang Li | Jinfeng Xiao | Minhao Jiang | Vivian Hu | Xuan Wang | Heng Ji | Martin Burke | Huimin Zhao | Jiawei Han
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Chemical reactions, as a core entity in the realm of chemistry, hold crucial implications in diverse areas ranging from hands-on laboratory research to advanced computational drug design. Despite a burgeoning interest in employing NLP techniques to extract these reactions, aligning this task with the real-world requirements of chemistry practitioners remains an ongoing challenge. In this paper, we present Reaction Miner, a system specifically designed to interact with raw scientific literature, delivering precise and more informative chemical reactions. Going beyond mere extraction, Reaction Miner integrates a holistic workflow: it accepts PDF files as input, bypassing the need for pre-processing and bolstering user accessibility. Subsequently, a text segmentation module ensures that the refined text encapsulates complete chemical reactions, augmenting the accuracy of extraction. Moreover, Reaction Miner broadens the scope of existing pre-defined reaction roles, including vital attributes previously neglected, thereby offering a more comprehensive depiction of chemical reactions. Evaluations conducted by chemistry domain users highlight the efficacy of each module in our system, demonstrating Reaction Miner as a powerful tool in this field.

2021

pdf bib
Dialogue Graph Modeling for Conversational Machine Reading
Siru Ouyang | Zhuosheng Zhang | Hai Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Smoothing Dialogue States for Open Conversational Machine Reading
Zhuosheng Zhang | Siru Ouyang | Hai Zhao | Masao Utiyama | Eiichiro Sumita
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.