Siting Liang


pdf bib
Reconstructing Implicit Knowledge with Language Models
Maria Becker | Siting Liang | Anette Frank
Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

In this work we propose an approach for generating statements that explicate implicit knowledge connecting sentences in text. We make use of pre-trained language models which we refine by fine-tuning them on specifically prepared corpora that we enriched with implicit information, and by constraining them with relevant concepts and connecting commonsense knowledge paths. Manual and automatic evaluation of the generations shows that by refining language models as proposed, we can generate coherent and grammatically sound sentences that explicate implicit knowledge which connects sentence pairs in texts – on both in-domain and out-of-domain test data.