Siyang Liu


2023

pdf bib
You Are What You Annotate: Towards Better Models through Annotator Representations
Naihao Deng | Xinliang Zhang | Siyang Liu | Winston Wu | Lu Wang | Rada Mihalcea
Findings of the Association for Computational Linguistics: EMNLP 2023

Annotator disagreement is ubiquitous in natural language processing (NLP) tasks. There are multiple reasons for such disagreements, including the subjectivity of the task, difficult cases, unclear guidelines, and so on. Rather than simply aggregating labels to obtain data annotations, we instead try to directly model the diverse perspectives of the annotators, and explicitly account for annotators’ idiosyncrasies in the modeling process by creating representations for each annotator (*annotator embeddings*) and also their annotations (*annotation embeddings*). In addition, we propose **TID-8**, **T**he **I**nherent **D**isagreement - **8** dataset, a benchmark that consists of eight existing language understanding datasets that have inherent annotator disagreement. We test our approach on TID-8 and show that our approach helps models learn significantly better from disagreements on six different datasets in TID-8 while increasing model size by fewer than 1% parameters. By capturing the unique tendencies and subjectivity of individual annotators through embeddings, our representations prime AI models to be inclusive of diverse viewpoints.

pdf bib
Task-Adaptive Tokenization: Enhancing Long-Form Text Generation Efficacy in Mental Health and Beyond
Siyang Liu | Naihao Deng | Sahand Sabour | Yilin Jia | Minlie Huang | Rada Mihalcea
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We propose task-adaptive tokenization as a way to adapt the generation pipeline to the specifics of a downstream task and enhance long-form generation in mental health. Inspired by insights from cognitive science, our task-adaptive tokenizer samples variable segmentations from multiple outcomes, with sampling probabilities optimized based on task-specific data. We introduce a strategy for building a specialized vocabulary and introduce a vocabulary merging protocol that allows for the integration of task-specific tokens into the pre-trained model’s tokenization step. Through extensive experiments on psychological question-answering tasks in both Chinese and English, we find that our task-adaptive tokenization approach brings a significant improvement in generation performance while using up to 60% fewer tokens. Preliminary experiments point to promising results when using our tokenization approach with very large language models.

2022

pdf bib
Rethinking and Refining the Distinct Metric
Siyang Liu | Sahand Sabour | Yinhe Zheng | Pei Ke | Xiaoyan Zhu | Minlie Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Distinct is a widely used automatic metric for evaluating diversity in language generation tasks. However, we observed that the original approach to calculating distinct scores has evident biases that tend to assign higher penalties to longer sequences. We refine the calculation of distinct scores by scaling the number of distinct tokens based on their expectations. We provide both empirical and theoretical evidence to show that our method effectively removes the biases existing in the original distinct score. Our experiments show that our proposed metric, Expectation-Adjusted Distinct (EAD), correlates better with human judgment in evaluating response diversity.To assist future research, we provide an example implementation at https://github.com/lsy641/Expectation-Adjusted-Distinct.

2021

pdf bib
Towards Emotional Support Dialog Systems
Siyang Liu | Chujie Zheng | Orianna Demasi | Sahand Sabour | Yu Li | Zhou Yu | Yong Jiang | Minlie Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Emotional support is a crucial ability for many conversation scenarios, including social interactions, mental health support, and customer service chats. Following reasonable procedures and using various support skills can help to effectively provide support. However, due to the lack of a well-designed task and corpora of effective emotional support conversations, research on building emotional support into dialog systems remains lacking. In this paper, we define the Emotional Support Conversation (ESC) task and propose an ESC Framework, which is grounded on the Helping Skills Theory. We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode. To ensure a corpus of high-quality conversations that provide examples of effective emotional support, we take extensive effort to design training tutorials for supporters and several mechanisms for quality control during data collection. Finally, we evaluate state-of-the-art dialog models with respect to the ability to provide emotional support. Our results show the importance of support strategies in providing effective emotional support and the utility of ESConv in training more emotional support systems.

pdf bib
PsyQA: A Chinese Dataset for Generating Long Counseling Text for Mental Health Support
Hao Sun | Zhenru Lin | Chujie Zheng | Siyang Liu | Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge
Pei Ke | Haozhe Ji | Siyang Liu | Xiaoyan Zhu | Minlie Huang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most of the existing pre-trained language representation models neglect to consider the linguistic knowledge of texts, which can promote language understanding in NLP tasks. To benefit the downstream tasks in sentiment analysis, we propose a novel language representation model called SentiLARE, which introduces word-level linguistic knowledge including part-of-speech tag and sentiment polarity (inferred from SentiWordNet) into pre-trained models. We first propose a context-aware sentiment attention mechanism to acquire the sentiment polarity of each word with its part-of-speech tag by querying SentiWordNet. Then, we devise a new pre-training task called label-aware masked language model to construct knowledge-aware language representation. Experiments show that SentiLARE obtains new state-of-the-art performance on a variety of sentiment analysis tasks.