Siyu An
2024
Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence
Junru Lu
|
Jiazheng Li
|
Siyu An
|
Meng Zhao
|
Yulan He
|
Di Yin
|
Xing Sun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Direct Preference Optimization (DPO) has emerged as a prominent algorithm for the direct and robust alignment of Large Language Models (LLMs) with human preferences, offering a more straightforward alternative to the complex Reinforcement Learning from Human Feedback (RLHF). Despite its promising efficacy, DPO faces a notable drawback: “verbosity”, a common over-optimization phenomenon also observed in RLHF. While previous studies mainly attributed verbosity to biased labels within the data, we propose that the issue also stems from an inherent algorithmic length reliance in DPO. Specifically, we suggest that the discrepancy between sequence-level Kullback–Leibler (KL) divergences between chosen and rejected sequences, used in DPO, results in overestimated or underestimated rewards due to varying token lengths. Empirically, we utilize datasets with different label lengths to demonstrate the presence of biased rewards. We then introduce an effective downsampling approach, named SamPO, to eliminate potential length reliance. Our experimental evaluations, conducted across three LLMs of varying scales and a diverse array of conditional and open-ended benchmarks, highlight the efficacy of SamPO in mitigating verbosity, achieving improvements of 5% to 12% over DPO through debaised rewards. Our code can be accessed at: https://github.com/LuJunru/SamPO/.
2023
VKIE: The Application of Key Information Extraction on Video Text
Siyu An
|
Ye Liu
|
Haoyuan Peng
|
Di Yin
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Extracting structured information from videos is critical for numerous downstream applications in the industry. In this paper, we define a significant task of extracting hierarchical key information from visual texts on videos. To fulfill this task, we decouple it into four subtasks and introduce two implementation solutions called PipVKIE and UniVKIE. PipVKIE sequentially completes the four subtasks in continuous stages, while UniVKIE is improved by unifying all the subtasks into one backbone. Both PipVKIE and UniVKIE leverage multimodal information from vision, text, and coordinates for feature representation. Extensive experiments on one well-defined dataset demonstrate that our solutions can achieve remarkable performance and efficient inference speed.
Search
Co-authors
- Di Yin 2
- Haoyuan Peng 1
- Jiazheng Li 1
- Junru Lu 1
- Meng Zhao 1
- show all...