Siyu Qiu


2017

pdf bib
A Continuously Growing Dataset of Sentential Paraphrases
Wuwei Lan | Siyu Qiu | Hua He | Wei Xu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

A major challenge in paraphrase research is the lack of parallel corpora. In this paper, we present a new method to collect large-scale sentential paraphrases from Twitter by linking tweets through shared URLs. The main advantage of our method is its simplicity, as it gets rid of the classifier or human in the loop needed to select data before annotation and subsequent application of paraphrase identification algorithms in the previous work. We present the largest human-labeled paraphrase corpus to date of 51,524 sentence pairs and the first cross-domain benchmarking for automatic paraphrase identification. In addition, we show that more than 30,000 new sentential paraphrases can be easily and continuously captured every month at ~70% precision, and demonstrate their utility for downstream NLP tasks through phrasal paraphrase extraction. We make our code and data freely available.

2014

pdf bib
Co-learning of Word Representations and Morpheme Representations
Siyu Qiu | Qing Cui | Jiang Bian | Bin Gao | Tie-Yan Liu
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers