While state-of-the-art large language models (LLMs) can excel at adapting text from one style to another, current work does not address the explainability of style transfer models. Recent work has explored generating textual explanations from larger teacher models and distilling them into smaller student models. One challenge with such approach is that LLM outputs may contain errors that require expertise to correct, but gathering and incorporating expert feedback is difficult due to cost and availability. To address this challenge, we propose ICLEF, a novel human-AI collaboration approach to model distillation that incorporates scarce expert human feedback by combining in-context learning and model self-critique. We show that our method leads to generation of high-quality synthetic explainable style transfer datasets for formality (E-GYAFC) and subjective bias (E-WNC). Via automatic and human evaluation, we show that specialized student models fine-tuned on our datasets outperform generalist teacher models on the explainable style transfer task in one-shot settings, and perform competitively compared to few-shot teacher models, highlighting the quality of the data and the role of expert feedback. In an extrinsic task of authorship attribution, we show that explanations generated by smaller models fine-tuned on E-GYAFC are more predictive of authorship than explanations generated by few-shot teacher models.
We explore how weak supervision on abundant unlabeled data can be leveraged to improve few-shot performance in aspect-based sentiment analysis (ABSA) tasks. We propose a pipeline approach to construct a noisy ABSA dataset, and we use it to adapt a pre-trained sequence-to-sequence model to the ABSA tasks. We test the resulting model on three widely used ABSA datasets, before and after fine-tuning. Our proposed method preserves the full fine-tuning performance while showing significant improvements (15.84 absolute F1) in the few-shot learning scenario for the harder tasks. In zero-shot (i.e., without fine-tuning), our method outperforms the previous state of the art on the aspect extraction sentiment classification (AESC) task and is, additionally, capable of performing the harder aspect sentiment triplet extraction (ASTE) task.
The New York Times Connections game has emerged as a popular and challenging pursuit for word puzzle enthusiasts. We collect438 Connections games to evaluate the performance of state-of-the-art large language models (LLMs) against expert and novice humanplayers. Our results show that even the best-performing LLM, Claude 3.5 Sonnet, which has otherwise shown impressive reasoning abilities on a wide variety of benchmarks, can only fully solve 18% of the games. Novice and expert players perform better than Claude 3.5 Sonnet, with expert human players significantly outperforming it. We create a taxonomy of the knowledge types required to successfully cluster and categorize words in the Connections game. We find that while LLMs are decent at categorizing words based on semantic relations they struggle with other types of knowledge such as Encyclopedic Knowledge, Multiword Expressions or knowledge that combines both Word Form and Meaning. Our results establish the New York Times Connections game as a challenging benchmark for evaluating abstract reasoning capabilities in humans and AI systems.
We present the outcomes of the Multimodal Figurative Language Shared Task held at the 4th Workshop on Figurative Language Processing (FigLang 2024) co-located at NAACL 2024. The task utilized the V-FLUTE dataset which is comprised of <image, text> pairs that use figurative language and includes detailed textual explanations for the entailment or contradiction relationship of each pair. The challenge for participants was to develop models capable of accurately identifying the visual entailment relationship in these multimodal instances and generating persuasive free-text explanations. The results showed that the participants’ models significantly outperformed the initial baselines in both automated and human evaluations. We also provide an overview of the systems submitted and analyze the results of the evaluations. All participating systems outperformed the LLaVA-ZS baseline, provided by us in F1-score.
In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids making it a national public health emergency (USDHHS, 2017). Medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors. We present a moderate size corpus of 2500 opioid-related posts from various subreddits labeled with six different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum.
Recognizing fallacies is crucial for ensuring the quality and validity of arguments across various domains. However, computational fallacy recognition faces challenges due to the diverse genres, domains, and types of fallacies found in datasets. This leads to a highly multi-class, and even multi-label, setup with substantial class imbalance. In this study, we aim to enhance existing models for fallacy recognition by incorporating additional context and by leveraging large language models to generate synthetic data, thus increasing the representation of the infrequent classes. We experiment with GPT3.5 to generate synthetic examples and we examine the impact of prompt settings for this. Moreover, we explore zero-shot and few-shot scenarios to evaluate the effectiveness of using the generated examples for training smaller models within a unified fallacy recognition framework. Furthermore, we analyze the overlap between the synthetic data and existing fallacy datasets. Finally, we investigate the usefulness of providing supplementary context for detecting fallacy types that need such context, e.g., diversion fallacies. Our evaluation results demonstrate consistent improvements across fallacy types, datasets, and generators. The code and the synthetic datasets are all publicly available.
Designing systems that can reason across cultures requires that they are grounded in the norms of the contexts in which they operate. However, current research on developing computational models of social norms has primarily focused on American society. Here, we propose a novel approach to discover and compare descriptive social norms across Chinese and American cultures. We demonstrate our approach by leveraging discussions on a Chinese Q&A platform—Zhihu—and the existing SocialChemistry dataset as proxies for contrasting cultural axes, align social situations cross-culturally, and extract social norms from texts using in-context learning. Embedding Chain-of-Thought prompting in a human-AI collaborative framework, we build a high-quality dataset of 3,069 social norms aligned with social situations across Chinese and American cultures alongside corresponding free-text explanations. To test the ability of models to reason about social norms across cultures, we introduce the task of explainable social norm entailment, showing that existing models under 3B parameters have significant room for improvement in both automatic and human evaluation. Further analysis of cross-cultural norm differences based on our dataset shows empirical alignment with the social orientations framework, revealing several situational and descriptive nuances in norms across these cultures.
Knowledge of norms is needed to understand and reason about acceptable behavior in human communication and interactions across sociocultural scenarios. Most computational research on norms has focused on a single culture, and manually built datasets, from non-conversational settings. We address these limitations by proposing a new framework, NormSage, to automatically extract culture-specific norms from multi-lingual conversations. NormSage uses GPT-3 prompting to 1) extract candidate norms directly from conversations and 2) provide explainable self-verification to ensure correctness and relevance. Comprehensive empirical results show the promise of our approach to extract high-quality culture-aware norms from multi-lingual conversations (English and Chinese), across several quality metrics. Further, our relevance verification can be extended to assess the adherence and violation of any norm with respect to a conversation on-the-fly, along with textual explanation. NormSage achieves an AUC of 94.6% in this grounding setup, with generated explanations matching human-written quality.
Social norms fundamentally shape interpersonal communication. We present NormDial, a high-quality dyadic dialogue dataset with turn-by-turn annotations of social norm adherences and violations for Chinese and American cultures. Introducing the task of social norm observance detection, our dataset is synthetically generated in both Chinese and English using a human-in-the-loop pipeline by prompting large language models with a small collection of expert-annotated social norms. We show that our generated dialogues are of high quality through human evaluation and further evaluate the performance of existing large language models on this task. Our findings point towards new directions for understanding the nuances of social norms as they manifest in conversational contexts that span across languages and cultures.
Visual metaphors are powerful rhetorical devices used to persuade or communicate creative ideas through images. Similar to linguistic metaphors, they convey meaning implicitly through symbolism and juxtaposition of the symbols. We propose a new task of generating visual metaphors from linguistic metaphors. This is a challenging task for diffusion-based text-to-image models, such as DALL⋅E 2, since it requires the ability to model implicit meaning and compositionality. We propose to solve the task through the collaboration between Large Language Models (LLMs) and Diffusion Models: Instruct GPT-3 (davinci-002) with Chain-of-Thought prompting generates text that represents a visual elaboration of the linguistic metaphor containing the implicit meaning and relevant objects, which is then used as input to the diffusion-based text-to-image models. Using a human-AI collaboration framework, where humans interact both with the LLM and the top-performing diffusion model, we create a high-quality dataset containing 6,476 visual metaphors for 1,540 linguistic metaphors and their associated visual elaborations. Evaluation by professional illustrators shows the promise of LLM-Diffusion Model collaboration for this task.To evaluate the utility of our Human-AI collaboration framework and the quality of our dataset, we perform both an intrinsic human-based evaluation and an extrinsic evaluation using visual entailment as a downstream task.
Natural language instructions are a powerful interface for editing the outputs of text-to-image diffusion models. However, several challenges need to be addressed: 1) underspecification (the need to model the implicit meaning of instructions) 2) grounding (the need to localize where the edit has to be performed), 3) faithfulness (the need to preserve the elements of the image not affected by the edit instruction). Current approaches focusing on image editing with natural language instructions rely on automatically generated paired data, which, as shown in our investigation, is noisy and sometimes nonsensical, exacerbating the above issues. Building on recent advances in segmentation, Chain-of-Thought prompting, and visual question answering, we significantly improve the quality of the paired data. In addition, we enhance the supervision signal by highlighting parts of the image that need to be changed by the instruction. The model fine-tuned on the improved data is capable of performing fine-grained object-centric edits better than state-of-the-art baselines, mitigating the problems outlined above, as shown by automatic and human evaluations. Moreover, our model is capable of generalizing to domains unseen during training, such as visual metaphors.
While the link between color and emotion has been widely studied, how context-based changes in color impact the intensity of perceived emotions is not well understood. In this work, we present a new multimodal dataset for exploring the emotional connotation of color as mediated by line, stroke, texture, shape, and language. Our dataset, FeelingBlue, is a collection of 19,788 4-tuples of abstract art ranked by annotators according to their evoked emotions and paired with rationales for those annotations. Using this corpus, we present a baseline for a new task: Justified Affect Transformation. Given an image I, the task is to 1) recolor I to enhance a specified emotion e and 2) provide a textual justification for the change in e. Our model is an ensemble of deep neural networks which takes I, generates an emotionally transformed color palette p conditioned on I, applies p to I, and then justifies the color transformation in text via a visual-linguistic model. Experimental results shed light on the emotional connotation of color in context, demonstrating both the promise of our approach on this challenging task and the considerable potential for future investigations enabled by our corpus.1
Aspect-based Sentiment Analysis (ABSA) is a fine-grained sentiment analysis task which involves four elements from user-generated texts:aspect term, aspect category, opinion term, and sentiment polarity. Most computational approaches focus on some of the ABSA sub-taskssuch as tuple (aspect term, sentiment polarity) or triplet (aspect term, opinion term, sentiment polarity) extraction using either pipeline or joint modeling approaches. Recently, generative approaches have been proposed to extract all four elements as (one or more) quadrupletsfrom text as a single task. In this work, we take a step further and propose a unified framework for solving ABSA, and the associated sub-tasksto improve the performance in few-shot scenarios. To this end, we fine-tune a T5 model with instructional prompts in a multi-task learning fashion covering all the sub-tasks, as well as the entire quadruple prediction task. In experiments with multiple benchmark datasets, we show that the proposed multi-task prompting approach brings performance boost (by absolute 8.29 F1) in the few-shot learning setting.
Polysynthetic languages present a challenge for morphological analysis due to the complexity of their words and the lack of high-quality annotated datasets needed to build and/or evaluate computational models. The contribution of this work is twofold. First, using linguists’ help, we generate and contribute high-quality annotated data for two low-resource polysynthetic languages for two tasks: morphological segmentation and part-of-speech (POS) tagging. Second, we present the results of state-of-the-art unsupervised approaches for these two tasks on Adyghe and Inuktitut. Our findings show that for these polysynthetic languages, using linguistic priors helps the task of morphological segmentation and that using stems rather than words as the core unit of abstraction leads to superior performance on POS tagging.
Affective responses to music are highly personal. Despite consensus that idiosyncratic factors play a key role in regulating how listeners emotionally respond to music, precisely measuring the marginal effects of these variables has proved challenging. To address this gap, we develop computational methods to measure affective responses to music from over 403M listener comments on a Chinese social music platform. Building on studies from music psychology in systematic and quasi-causal analyses, we test for musical, lyrical, contextual, demographic, and mental health effects that drive listener affective responses. Finally, motivated by the social phenomenon known as 网抑云 (wǎng-yì-yún), we identify influencing factors of platform user self-disclosures, the social support they receive, and notable differences in discloser user activity.
Recent work on large language models relies on the intuition that most natural language processing tasks can be described via natural language instructions and that models trained on these instructions show strong zero-shot performance on several standard datasets. However, these models even though impressive still perform poorly on a wide range of tasks outside of their respective training and evaluation sets.To address this limitation, we argue that a model should be able to keep extending its knowledge and abilities, without forgetting previous skills. In spite of the limited success of Continual Learning, we show that Fine-tuned Language Models can be continual learners.We empirically investigate the reason for this success and conclude that Continual Learning emerges from self-supervision pre-training. Our resulting model Continual-T0 (CT0) is able to learn 8 new diverse language generation tasks, while still maintaining good performance on previous tasks, spanning in total of 70 datasets. Finally, we show that CT0 is able to combine instructions in ways it was never trained for, demonstrating some level of instruction compositionality.
Figurative language understanding has been recently framed as a recognizing textual entailment (RTE) task (a.k.a. natural language inference (NLI)). However, similar to classical RTE/NLI datasets they suffer from spurious correlations and annotation artifacts. To tackle this problem, work on NLI has built explanation-based datasets such as eSNLI, allowing us to probe whether language models are right for the right reasons. Yet no such data exists for figurative language, making it harder to assess genuine understanding of such expressions. To address this issue, we release FLUTE, a dataset of 9,000 figurative NLI instances with explanations, spanning four categories: Sarcasm, Simile, Metaphor, and Idioms. We collect the data through a Human-AI collaboration framework based on GPT-3, crowd workers, and expert annotators. We show how utilizing GPT-3 in conjunction with human annotators (novices and experts) can aid in scaling up the creation of datasets even for such complex linguistic phenomena as figurative language. The baseline performance of the T5 model fine-tuned on FLUTE shows that our dataset can bring us a step closer to developing models that understand figurative language through textual explanations.
Fallacies are used as seemingly valid arguments to support a position and persuade the audience about its validity. Recognizing fallacies is an intrinsically difficult task both for humans and machines. Moreover, a big challenge for computational models lies in the fact that fallacies are formulated differently across the datasets with differences in the input format (e.g., question-answer pair, sentence with fallacy fragment), genre (e.g., social media, dialogue, news), as well as types and number of fallacies (from 5 to 18 types per dataset). To move towards solving the fallacy recognition task, we approach these differences across datasets as multiple tasks and show how instruction-based prompting in a multitask setup based on the T5 model improves the results against approaches built for a specific dataset such as T5, BERT or GPT-3. We show the ability of this multitask prompting approach to recognize 28 unique fallacies across domains and genres and study the effect of model size and prompt choice by analyzing the per-class (i.e., fallacy type) results. Finally, we analyze the effect of annotation quality on model performance, and the feasibility of complementing this approach with external knowledge.
Recent work on question generation has largely focused on factoid questions such as who, what,where, when about basic facts. Generating open-ended why, how, what, etc. questions thatrequire long-form answers have proven more difficult. To facilitate the generation of openended questions, we propose CONSISTENT, a new end-to-end system for generating openended questions that are answerable from and faithful to the input text. Using news articles asa trustworthy foundation for experimentation, we demonstrate our model’s strength over several baselines using both automatic and human based evaluations. We contribute an evaluationdataset of expert-generated open-ended questions. We discuss potential downstream applications for news media organizations.
We present the results of the Shared Task on Understanding Figurative Language that we conducted as a part of the 3rd Workshop on Figurative Language Processing (FigLang 2022) at EMNLP 2022. The shared task is based on the FLUTE dataset (Chakrabarty et al., 2022), which consists of NLI pairs containing figurative language along with free text explanations for each NLI instance. The task challenged participants to build models that are able to not only predict the right label for a figurative NLI instance, but also generate a convincing free-text explanation. The participants were able to significantly improve upon provided baselines in both automatic and human evaluation settings. We further summarize the submitted systems and discuss the evaluation results.
We present the BeSt corpus, which records cognitive state: who believes what (i.e., factuality), and who has what sentiment towards what. This corpus is inspired by similar source-and-target corpora, specifically MPQA and FactBank. The corpus comprises two genres, newswire and discussion forums, in three languages, Chinese (Mandarin), English, and Spanish. The corpus is distributed through the LDC.
Unsupervised cross-lingual projection for part-of-speech (POS) tagging relies on the use of parallel data to project POS tags from a source language for which a POS tagger is available onto a target language across word-level alignments. The projected tags then form the basis for learning a POS model for the target language. However, languages with rich morphology often yield sparse word alignments because words corresponding to the same citation form do not align well. We hypothesize that for morphologically complex languages, it is more efficient to use the stem rather than the word as the core unit of abstraction. Our contributions are: 1) we propose an unsupervised stem-based cross-lingual approach for POS tagging for low-resource languages of rich morphology; 2) we further investigate morpheme-level alignment and projection; and 3) we examine whether the use of linguistic priors for morphological segmentation improves POS tagging. We conduct experiments using six source languages and eight morphologically complex target languages of diverse typologies. Our results show that the stem-based approach improves the POS models for all the target languages, with an average relative error reduction of 10.3% in accuracy per target language, and outperforms the word-based approach that operates on three-times more data for about two thirds of the language pairs we consider. Moreover, we show that morpheme-level alignment and projection and the use of linguistic priors for morphological segmentation further improve POS tagging.
We introduce a FEVER-like dataset COVID-Fact of 4,086 claims concerning the COVID-19 pandemic. The dataset contains claims, evidence for the claims, and contradictory claims refuted by the evidence. Unlike previous approaches, we automatically detect true claims and their source articles and then generate counter-claims using automatic methods rather than employing human annotators. Along with our constructed resource, we formally present the task of identifying relevant evidence for the claims and verifying whether the evidence refutes or supports a given claim. In addition to scientific claims, our data contains simplified general claims from media sources, making it better suited for detecting general misinformation regarding COVID-19. Our experiments indicate that COVID-Fact will provide a challenging testbed for the development of new systems and our approach will reduce the costs of building domain-specific datasets for detecting misinformation.
Generating metaphors is a difficult task as it requires understanding nuanced relationships between abstract concepts. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Guided by conceptual metaphor theory, we propose to control the generation process by encoding conceptual mappings between cognitive domains to generate meaningful metaphoric expressions. To achieve this, we develop two methods: 1) using FrameNet-based embeddings to learn mappings between domains and applying them at the lexical level (CM-Lex), and 2) deriving source/target pairs to train a controlled seq-to-seq generation model (CM-BART). We assess our methods through automatic and human evaluation for basic metaphoricity and conceptual metaphor presence. We show that the unsupervised CM-Lex model is competitive with recent deep learning metaphor generation systems, and CM-BART outperforms all other models both in automatic and human evaluations.
Social media has become a valuable resource for the study of suicidal ideation and the assessment of suicide risk. Among social media platforms, Reddit has emerged as the most promising one due to its anonymity and its focus on topic-based communities (subreddits) that can be indicative of someone’s state of mind or interest regarding mental health disorders such as r/SuicideWatch, r/Anxiety, r/depression. A challenge for previous work on suicide risk assessment has been the small amount of labeled data. We propose an empirical investigation into several classes of weakly-supervised approaches, and show that using pseudo-labeling based on related issues around mental health (e.g., anxiety, depression) helps improve model performance for suicide risk assessment.
Detecting arguments in online interactions is useful to understand how conflicts arise and get resolved. Users often use figurative language, such as sarcasm, either as persuasive devices or to attack the opponent by an ad hominem argument. To further our understanding of the role of sarcasm in shaping the disagreement space, we present a thorough experimental setup using a corpus annotated with both argumentative moves (agree/disagree) and sarcasm. We exploit joint modeling in terms of (a) applying discrete features that are useful in detecting sarcasm to the task of argumentative relation classification (agree/disagree/none), and (b) multitask learning for argumentative relation classification and sarcasm detection using deep learning architectures (e.g., dual Long Short-Term Memory (LSTM) with hierarchical attention and Transformer-based architectures). We demonstrate that modeling sarcasm improves the argumentative relation classification task (agree/disagree/none) in all setups.
Enthymemes are defined as arguments where a premise or conclusion is left implicit. We tackle the task of generating the implicit premise in an enthymeme, which requires not only an understanding of the stated conclusion and premise but also additional inferences that could depend on commonsense knowledge. The largest available dataset for enthymemes (Habernal et al., 2018) consists of 1.7k samples, which is not large enough to train a neural text generation model. To address this issue, we take advantage of a similar task and dataset: Abductive reasoning in narrative text (Bhagavatula et al., 2020). However, we show that simply using a state-of-the-art seq2seq model fine-tuned on this data might not generate meaningful implicit premises associated with the given enthymemes. We demonstrate that encoding discourse-aware commonsense during fine-tuning improves the quality of the generated implicit premises and outperforms all other baselines both in automatic and human evaluations on three different datasets.
Despite constant improvements in machine translation quality, automatic poetry translation remains a challenging problem due to the lack of open-sourced parallel poetic corpora, and to the intrinsic complexities involved in preserving the semantics, style and figurative nature of poetry. We present an empirical investigation for poetry translation along several dimensions: 1) size and style of training data (poetic vs. non-poetic), including a zero-shot setup; 2) bilingual vs. multilingual learning; and 3) language-family-specific models vs. mixed-language-family models. To accomplish this, we contribute a parallel dataset of poetry translations for several language pairs. Our results show that multilingual fine-tuning on poetic text significantly outperforms multilingual fine-tuning on non-poetic text that is 35X larger in size, both in terms of automatic metrics (BLEU, BERTScore, COMET) and human evaluation metrics such as faithfulness (meaning and poetic style). Moreover, multilingual fine-tuning on poetic data outperforms bilingual fine-tuning on poetic data.
The problem of detecting psychological stress in online posts, and more broadly, of detecting people in distress or in need of help, is a sensitive application for which the ability to interpret models is vital. Here, we present work exploring the use of a semantically related task, emotion detection, for equally competent but more explainable and human-like psychological stress detection as compared to a black-box model. In particular, we explore the use of multi-task learning as well as emotion-based language model fine-tuning. With our emotion-infused models, we see comparable results to state-of-the-art BERT. Our analysis of the words used for prediction show that our emotion-infused models mirror psychological components of stress.
Generating metaphors is a challenging task as it requires a proper understanding of abstract concepts, making connections between unrelated concepts, and deviating from the literal meaning. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Based on a theoretically-grounded connection between metaphors and symbols, we propose a method to automatically construct a parallel corpus by transforming a large number of metaphorical sentences from the Gutenberg Poetry corpus (CITATION) to their literal counterpart using recent advances in masked language modeling coupled with commonsense inference. For the generation task, we incorporate a metaphor discriminator to guide the decoding of a sequence to sequence model fine-tuned on our parallel data to generate high-quality metaphors. Human evaluation on an independent test set of literal statements shows that our best model generates metaphors better than three well-crafted baselines 66% of the time on average. A task-based evaluation shows that human-written poems enhanced with metaphors proposed by our model are preferred 68% of the time compared to poems without metaphors.
Framing involves the positive or negative presentation of an argument or issue depending on the audience and goal of the speaker. Differences in lexical framing, the focus of our work, can have large effects on peoples’ opinions and beliefs. To make progress towards reframing arguments for positive effects, we create a dataset and method for this task. We use a lexical resource for “connotations” to create a parallel corpus and propose a method for argument reframing that combines controllable text generation (positive connotation) with a post-decoding entailment component (same denotation). Our results show that our method is effective compared to strong baselines along the dimensions of fluency, meaning, and trustworthiness/reduction of fear.
Most existing methods for automatic fact-checking start with a precompiled list of claims to verify. We investigate the understudied problem of determining what statements in news articles are worthy to fact-check. We annotate the argument structure of 95 news articles in the climate change domain that are fact-checked by climate scientists at climatefeedback.org. We release the first multi-layer annotated corpus for both argumentative discourse structure (argument types and relations) and for fact-checked statements in news articles. We discuss the connection between argument structure and check-worthy statements and develop several baseline models for detecting check-worthy statements in the climate change domain. Our preliminary results show that using information about argumentative discourse structure shows slight but statistically significant improvement over a baseline of local discourse structure.
We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence. Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm: reversal of valence and semantic incongruity with the context, which could include shared commonsense or world knowledge between the speaker and the listener. While prior works on sarcasm generation predominantly focus on context incongruity, we show that combining valence reversal and semantic incongruity based on the commonsense knowledge generates sarcasm of higher quality. Human evaluation shows that our system generates sarcasm better than humans 34% of the time, and better than a reinforced hybrid baseline 90% of the time.
The increased focus on misinformation has spurred development of data and systems for detecting the veracity of a claim as well as retrieving authoritative evidence. The Fact Extraction and VERification (FEVER) dataset provides such a resource for evaluating endto- end fact-checking, requiring retrieval of evidence from Wikipedia to validate a veracity prediction. We show that current systems for FEVER are vulnerable to three categories of realistic challenges for fact-checking – multiple propositions, temporal reasoning, and ambiguity and lexical variation – and introduce a resource with these types of claims. Then we present a system designed to be resilient to these “attacks” using multiple pointer networks for document selection and jointly modeling a sequence of evidence sentences and veracity relation predictions. We find that in handling these attacks we obtain state-of-the-art results on FEVER, largely due to improved evidence retrieval.
A 2018 study led by the Media Insight Project showed that most journalists think that a clearmarking of what is news reporting and what is commentary or opinion (e.g., editorial, op-ed)is essential for gaining public trust. We present an approach to classify news articles into newsstories (i.e., reporting of factual information) and opinion pieces using models that aim to sup-plement the article content representation with argumentation features. Our hypothesis is thatthe nature of argumentative discourse is important in distinguishing between news stories andopinion articles. We show that argumentation features outperform linguistic features used previ-ously and improve on fine-tuned transformer-based models when tested on data from publishersunseen in training. Automatically flagging opinion pieces vs. news stories can aid applicationssuch as fact-checking or event extraction.
We describe a fully unsupervised cross-lingual transfer approach for part-of-speech (POS) tagging under a truly low resource scenario. We assume access to parallel translations between the target language and one or more source languages for which POS taggers are available. We use the Bible as parallel data in our experiments: small size, out-of-domain and covering many diverse languages. Our approach innovates in three ways: 1) a robust approach of selecting training instances via cross-lingual annotation projection that exploits best practices of unsupervised type and token constraints, word-alignment confidence and density of projected POS, 2) a Bi-LSTM architecture that uses contextualized word embeddings, affix embeddings and hierarchical Brown clusters, and 3) an evaluation on 12 diverse languages in terms of language family and morphological typology. In spite of the use of limited and out-of-domain parallel data, our experiments demonstrate significant improvements in accuracy over previous work. In addition, we show that using multi-source information, either via projection or output combination, improves the performance for most target languages.
Literary tropes, from poetry to stories, are at the crux of human imagination and communication. Figurative language such as a simile go beyond plain expressions to give readers new insights and inspirations. In this paper, we tackle the problem of simile generation. Generating a simile requires proper understanding for effective mapping of properties between two concepts. To this end, we first propose a method to automatically construct a parallel corpus by transforming a large number of similes collected from Reddit to their literal counterpart using structured common sense knowledge. We then propose to fine-tune a pre-trained sequence to sequence model, BART (Lewis et al 2019), on the literal-simile pairs to gain generalizability, so that we can generate novel similes given a literal sentence. Experiments show that our approach generates 88% novel similes that do not share properties with the training data. Human evaluation on an independent set of literal statements shows that our model generates similes better than two literary experts 37% of the time when compared pairwise. We also show how replacing literal sentences with similes from our best model in machine-generated stories improves evocativeness and leads to better acceptance by human judges.
Leveraging large amounts of unlabeled data using Transformer-like architectures, like BERT, has gained popularity in recent times owing to their effectiveness in learning general representations that can then be further fine-tuned for downstream tasks to much success. However, training these models can be costly both from an economic and environmental standpoint. In this work, we investigate how to effectively use unlabeled data: by exploring the task-specific semi-supervised approach, Cross-View Training (CVT) and comparing it with task-agnostic BERT in multiple settings that include domain and task relevant English data. CVT uses a much lighter model architecture and we show that it achieves similar performance to BERT on a set of sequence tagging tasks, with lesser financial and environmental impact.
Detecting sarcasm and verbal irony is critical for understanding people’s actual sentiments and beliefs. Thus, the field of sarcasm analysis has become a popular research problem in natural language processing. As the community working on computational approaches for sarcasm detection is growing, it is imperative to conduct benchmarking studies to analyze the current state-of-the-art, facilitating progress in this area. We report on the shared task on sarcasm detection we conducted as a part of the 2nd Workshop on Figurative Language Processing (FigLang 2020) at ACL 2020.
Computational morphological segmentation has been an active research topic for decades as it is beneficial for many natural language processing tasks. With the high cost of manually labeling data for morphology and the increasing interest in low-resource languages, unsupervised morphological segmentation has become essential for processing a typologically diverse set of languages, whether high-resource or low-resource. In this paper, we present and release MorphAGram, a publicly available framework for unsupervised morphological segmentation that uses Adaptor Grammars (AG) and is based on the work presented by Eskander et al. (2016). We conduct an extensive quantitative and qualitative evaluation of this framework on 12 languages and show that the framework achieves state-of-the-art results across languages of different typologies (from fusional to polysynthetic and from high-resource to low-resource).
Distributed word embeddings have become ubiquitous in natural language processing as they have been shown to improve performance in many semantic and syntactic tasks. Popular models for learning cross-lingual word embeddings do not consider the morphology of words. We propose an approach to learn bilingual embeddings using parallel data and subword information that is expressed in various forms, i.e. character n-grams, morphemes obtained by unsupervised morphological segmentation and byte pair encoding. We report results for three low resource morphologically rich languages (Swahili, Tagalog, and Somali) and a high resource language (German) in a simulated a low-resource scenario. Our results show that our method that leverages subword information outperforms the model without subword information, both in intrinsic and extrinsic evaluations of the learned embeddings. Specifically, analogy reasoning results show that using subwords helps capture syntactic characteristics. Semantically, word similarity results and intrinsically, word translation scores demonstrate superior performance over existing methods. Finally, qualitative analysis also shows better-quality cross-lingual embeddings particularly for morphological variants in both languages.
Byte-Pair Encoding (BPE) (Sennrich et al., 2016) has become a standard pre-processing step when building neural machine translation systems. However, it is not clear whether this is an optimal strategy in all settings. We conduct a controlled comparison of subword segmentation strategies for translating two low-resource morphologically rich languages (Swahili and Turkish) into English. We show that segmentations based on a unigram language model (Kudo, 2018) yield comparable BLEU and better recall for translating rare source words than BPE.
Argumentation is a type of discourse where speakers try to persuade their audience about the reasonableness of a claim by presenting supportive arguments. Most work in argument mining has focused on modeling arguments in monologues. We propose a computational model for argument mining in online persuasive discussion forums that brings together the micro-level (argument as product) and macro-level (argument as process) models of argumentation. Fundamentally, this approach relies on identifying relations between components of arguments in a discussion thread. Our approach for relation prediction uses contextual information in terms of fine-tuning a pre-trained language model and leveraging discourse relations based on Rhetorical Structure Theory. We additionally propose a candidate selection method to automatically predict what parts of one’s argument will be targeted by other participants in the discussion. Our models obtain significant improvements compared to recent state-of-the-art approaches using pointer networks and a pre-trained language model.
This paper presents the CUNLP submission for the NLP4IF 2019 shared-task on Fine-Grained Propaganda Detection. Our system finished 5th out of 26 teams on the sentence-level classification task and 5th out of 11 teams on the fragment-level classification task based on our scores on the blind test set. We present our models, a discussion of our ablation studies and experiments, and an analysis of our performance on all eighteen propaganda techniques present in the corpus of the shared task.
The paper presents Columbia team’s participation in the SemEval 2019 Shared Task 7: RumourEval 2019. Detecting rumour on social networks has been a focus of research in recent years. Previous work suffered from data sparsity, which potentially limited the application of more sophisticated neural architecture to this task. We mitigate this problem by proposing a multi-task learning approach together with language model fine-tuning. Our attention-based model allows different tasks to leverage different level of information. Our system ranked 6th overall with an F1-score of 36.25 on stance classification and F1 of 22.44 on rumour verification.
Community Question Answering forums are very popular nowadays, as they represent effective means for communities to share information around particular topics. But the information shared on these forums are often not authentic. This paper presents the ColumbiaNLP submission for the SemEval-2019 Task 8: Fact-Checking in Community Question Answering Forums. We show how fine-tuning a language model on a large unannotated corpus of old threads from Qatar Living forum helps us to classify question types (factual, opinion, socializing) and to judge the factuality of answers on the shared task labeled data from the same forum. Our system finished 4th and 2nd on Subtask A (question type classification) and B (answer factuality prediction), respectively, based on the official metric of accuracy.
The goal of any social media platform is to facilitate healthy and meaningful interactions among its users. But more often than not, it has been found that it becomes an avenue for wanton attacks. We propose an experimental study that has three aims: 1) to provide us with a deeper understanding of current data sets that focus on different types of abusive language, which are sometimes overlapping (racism, sexism, hate speech, offensive language, and personal attacks); 2) to investigate what type of attention mechanism (contextual vs. self-attention) is better for abusive language detection using deep learning architectures; and 3) to investigate whether stacked architectures provide an advantage over simple architectures for this task.
Polysynthetic languages pose a challenge for morphological analysis due to the root-morpheme complexity and to the word class “squish”. In addition, many of these polysynthetic languages are low-resource. We propose unsupervised approaches for morphological segmentation of low-resource polysynthetic languages based on Adaptor Grammars (AG) (Eskander et al., 2016). We experiment with four languages from the Uto-Aztecan family. Our AG-based approaches outperform other unsupervised approaches and show promise when compared to supervised methods, outperforming them on two of the four languages.
We present a unique dataset of student source-based argument essays to facilitate research on the relations between content, argumentation skills, and assessment. Two classroom writing assignments were given to college students in a STEM major, accompanied by a carefully designed rubric. The paper presents a reliability study of the rubric, showing it to be highly reliable, and initial annotation on content and argumentation annotation of the essays.
Computational models for sarcasm detection have often relied on the content of utterances in isolation. However, the speaker’s sarcastic intent is not always apparent without additional context. Focusing on social media discussions, we investigate three issues: (1) does modeling conversation context help in sarcasm detection? (2) can we identify what part of conversation context triggered the sarcastic reply? and (3) given a sarcastic post that contains multiple sentences, can we identify the specific sentence that is sarcastic? To address the first issue, we investigate several types of Long Short-Term Memory (LSTM) networks that can model both the conversation context and the current turn. We show that LSTM networks with sentence-level attention on context and current turn, as well as the conditional LSTM network, outperform the LSTM model that reads only the current turn. As conversation context, we consider the prior turn, the succeeding turn, or both. Our computational models are tested on two types of social media platforms: Twitter and discussion forums. We discuss several differences between these data sets, ranging from their size to the nature of the gold-label annotations. To address the latter two issues, we present a qualitative analysis of the attention weights produced by the LSTM models (with attention) and discuss the results compared with human performance on the two tasks.
We propose a novel paradigm of grounding comparative adjectives within the realm of color descriptions. Given a reference RGB color and a comparative term (e.g., lighter, darker), our model learns to ground the comparative as a direction in the RGB space such that the colors along the vector, rooted at the reference color, satisfy the comparison. Our model generates grounded representations of comparative adjectives with an average accuracy of 0.65 cosine similarity to the desired direction of change. These vectors approach colors with Delta-E scores of under 7 compared to the target colors, indicating the differences are very small with respect to human perception. Our approach makes use of a newly created dataset for this task derived from existing labeled color data.
Fact-checking is a journalistic practice that compares a claim made publicly against trusted sources of facts. Wang (2017) introduced a large dataset of validated claims from the POLITIFACT.com website (LIAR dataset), enabling the development of machine learning approaches for fact-checking. However, approaches based on this dataset have focused primarily on modeling the claim and speaker-related metadata, without considering the evidence used by humans in labeling the claims. We extend the LIAR dataset by automatically extracting the justification from the fact-checking article used by humans to label a given claim. We show that modeling the extracted justification in conjunction with the claim (and metadata) provides a significant improvement regardless of the machine learning model used (feature-based or deep learning) both in a binary classification task (true, false) and in a six-way classification task (pants on fire, false, mostly false, half true, mostly true, true).
This paper presents the ColumbiaNLP submission for the FEVER Workshop Shared Task. Our system is an end-to-end pipeline that extracts factual evidence from Wikipedia and infers a decision about the truthfulness of the claim based on the extracted evidence. Our pipeline achieves significant improvement over the baseline for all the components (Document Retrieval, Sentence Selection and Textual Entailment) both on the development set and the test set. Our team finished 6th out of 24 teams on the leader-board based on the preliminary results with a FEVER score of 49.06 on the blind test set compared to 27.45 of the baseline system.
Morphological segmentation is beneficial for several natural language processing tasks dealing with large vocabularies. Unsupervised methods for morphological segmentation are essential for handling a diverse set of languages, including low-resource languages. Eskander et al. (2016) introduced a Language Independent Morphological Segmenter (LIMS) using Adaptor Grammars (AG) based on the best-on-average performing AG configuration. However, while LIMS worked best on average and outperforms other state-of-the-art unsupervised morphological segmentation approaches, it did not provide the optimal AG configuration for five out of the six languages. We propose two language-independent classifiers that enable the selection of the optimal or nearly-optimal configuration for the morphological segmentation of unseen languages.
Argumentative text has been analyzed both theoretically and computationally in terms of argumentative structure that consists of argument components (e.g., claims, premises) and their argumentative relations (e.g., support, attack). Less emphasis has been placed on analyzing the semantic types of argument components. We propose a two-tiered annotation scheme to label claims and premises and their semantic types in an online persuasive forum, Change My View, with the long-term goal of understanding what makes a message persuasive. Premises are annotated with the three types of persuasive modes: ethos, logos, pathos, while claims are labeled as interpretation, evaluation, agreement, or disagreement, the latter two designed to account for the dialogical nature of our corpus. We aim to answer three questions: 1) can humans reliably annotate the semantic types of argument components? 2) are types of premises/claims positioned in recurrent orders? and 3) are certain types of claims and/or premises more likely to appear in persuasive messages than in non-persuasive messages?
Computational models for sarcasm detection have often relied on the content of utterances in isolation. However, speaker’s sarcastic intent is not always obvious without additional context. Focusing on social media discussions, we investigate two issues: (1) does modeling of conversation context help in sarcasm detection and (2) can we understand what part of conversation context triggered the sarcastic reply. To address the first issue, we investigate several types of Long Short-Term Memory (LSTM) networks that can model both the conversation context and the sarcastic response. We show that the conditional LSTM network (Rocktäschel et al. 2015) and LSTM networks with sentence level attention on context and response outperform the LSTM model that reads only the response. To address the second issue, we present a qualitative analysis of attention weights produced by the LSTM models with attention and discuss the results compared with human performance on the task.