Soline Felice
2024
Audiocite.net un grand corpus d’enregistrements vocaux de lecture en français
Soline Felice
|
Solène Evain
|
Solange Rossato
|
François Portet
Actes des 35èmes Journées d'Études sur la Parole
L’arrivée de l’apprentissage auto-supervisé dans le domaine du traitement automatique de la parole a permis l’utilisation de grands corpus non étiquetés pour obtenir des modèles pré-appris utilisés comme encodeurs des signaux de parole pour de nombreuses tâches. Toutefois, l’application de ces méthodes de SSL sur des langues telles que le français s’est montrée difficile due à la quantité limitée de corpus de parole du français publiquement accessible. C’est dans cet objectif que nous présentons le corpus Audiocite.net comprenant 6682 heures d’enregistrements de lecture par 130 locuteurs et locutrices. Ce corpus est construit à partir de livres audio provenant du site audiocite.net. En plus de décrire le processus de création et les statistiques obtenues, nous montrons également l’impact de ce corpus sur les modèles du projet LeBenchmark dans leurs versions 14k pour des tâches de traitement automatique de la parole.
Audiocite.net : A Large Spoken Read Dataset in French
Soline Felice
|
Solene Virginie Evain
|
Solange Rossato
|
François Portet
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
The advent of self-supervised learning (SSL) in speech processing has allowed the use of large unlabeled datasets to learn pre-trained models, serving as powerful encoders for various downstream tasks. However, the application of these SSL methods to languages such as French has proved difficult due to the scarcity of large French speech datasets. To advance the emergence of pre-trained models for French speech, we present the Audiocite.net corpus composed of 6,682 hours of recordings from 130 readers. This corpus is composed of audiobooks from the audiocite.net website, shared by 130 readers. In addition to describing the creation process and final statistics, we also show how this dataset impacted the models of LeBenchmark project in its 14k version for speech processing downstream tasks.