Somin Wadhwa


pdf bib
SemEval-2023 Task 8: Causal Medical Claim Identification and Related PIO Frame Extraction from Social Media Posts
Vivek Khetan | Somin Wadhwa | Byron Wallace | Silvio Amir
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Identification of medical claims from user-generated text data is an onerous but essential step for various tasks including content moderation, and hypothesis generation. SemEval-2023 Task 8 is an effort towards building those capabilities and motivating further research in this direction. This paper summarizes the details and results of shared task 8 at SemEval-2023 which involved identifying causal medical claims and extracting related Populations, Interventions, and Outcomes (“PIO”) frames from social media (Reddit) text. This shared task comprised two subtasks: (1) Causal claim identification; and (2) PIO frame extraction. In total, seven teams participated in the task. Of the seven, six provided system descriptions which we summarize here. For the first subtask, the best approach yielded a macro-averaged F-1 score of 78.40, and for the second subtask, the best approach achieved token-level F-1 scores of 40.55 for Populations, 49.71 for Interventions, and 30.08 for Outcome frames.

pdf bib
RedHOT: A Corpus of Annotated Medical Questions, Experiences, and Claims on Social Media
Somin Wadhwa | Vivek Khetan | Silvio Amir | Byron Wallace
Findings of the Association for Computational Linguistics: EACL 2023

We present Reddit Health Online Talk (RedHOT), a corpus of 22,000 richly annotated social media posts from Reddit spanning 24 health conditions. Annotations include demarcations of spans corresponding to medical claims, personal experiences, and questions. We collect additional granular annotations on identified claims. Specifically, we mark snippets that describe patient Populations, Interventions, and Outcomes (PIO elements) within these. Using this corpus, we introduce the task of retrieving trustworthy evidence relevant to a given claim made on social media. We propose a new method to automatically derive (noisy) supervision for this task which we use to train a dense retrieval model; this outperforms baseline models. Manual evaluation of retrieval results performed by medical doctors indicate that while our system performance is promising, there is considerable room for improvement. We release all annotations collected (and scripts to assemble the dataset), and all code necessary to reproduce the results in this paper at:

pdf bib
Revisiting Relation Extraction in the era of Large Language Models
Somin Wadhwa | Silvio Amir | Byron Wallace
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Relation extraction (RE) is the core NLP task of inferring semantic relationships between entities from text. Standard supervised RE techniques entail training modules to tag tokens comprising entity spans and then predict the relationship between them. Recent work has instead treated the problem as a sequence-to-sequence task, linearizing relations between entities as target strings to be generated conditioned on the input. Here we push the limits of this approach, using larger language models (GPT-3 and Flan-T5 large) than considered in prior work and evaluating their performance on standard RE tasks under varying levels of supervision. We address issues inherent to evaluating generative approaches to RE by doing human evaluations, in lieu of relying on exact matching. Under this refined evaluation, we find that: (1) Few-shot prompting with GPT-3 achieves near SOTA performance, i.e., roughly equivalent to existing fully supervised models; (2) Flan-T5 is not as capable in the few-shot setting, but supervising and fine-tuning it with Chain-of-Thought (CoT) style explanations (generated via GPT-3) yields SOTA results. We release this model as a new baseline for RE tasks.