Knowledge distillation (KD) is known as a promising solution to compress large language models (LLMs) via transferring their knowledge to smaller models. During this process, white-box KD methods usually minimize the distance between the output distributions of the two models so that more knowledge can be transferred. However, in the current white-box KD framework, the output distributions are from the respective output spaces of the two models, using their own prediction heads. We argue that the space discrepancy will lead to low similarity between the teacher model and the student model on both representation and distribution levels. Furthermore, this discrepancy also hinders the KD process between models with different vocabularies, which is common for current LLMs. To address these issues, we propose a dual-space knowledge distillation (DSKD) framework that unifies the output spaces of the two models for KD. On the basis of DSKD, we further develop a cross-model attention mechanism, which can automatically align the representations of the two models with different vocabularies. Thus, our framework is not only compatible with various distance functions for KD (e.g., KL divergence) like the current framework, but also supports KD between any two LLMs regardless of their vocabularies. Experiments on task-agnostic instruction-following benchmarks show that DSKD significantly outperforms the current white-box KD framework with various distance functions, and also surpasses existing KD methods for LLMs with different vocabularies.
Knowledge distillation (KD) is a promising technique for model compression in neural machine translation. However, where the knowledge hides in KD is still not clear, which may hinder the development of KD. In this work, we first unravel this mystery from an empirical perspective and show that the knowledge comes from the top-1 predictions of teachers, which also helps us build a potential connection between word- and sequence-level KD. Further, we point out two inherent issues in vanilla word-level KD based on this finding. Firstly, the current objective of KD spreads its focus to whole distributions to learn the knowledge, yet lacks special treatment on the most crucial top-1 information. Secondly, the knowledge is largely covered by the golden information due to the fact that most top-1 predictions of teachers overlap with ground-truth tokens, which further restricts the potential of KD. To address these issues, we propose a new method named Top-1 Information Enhanced Knowledge Distillation (TIE-KD). Specifically, we design a hierarchical ranking loss to enforce the learning of the top-1 information from the teacher. Additionally, we develop an iterative KD procedure to infuse more additional knowledge by distilling on the data without ground-truth targets. Experiments on WMT’14 English-German, WMT’14 English-French and WMT’16 English-Romanian demonstrate that our method can respectively boost Transformerbase students by +1.04, +0.60 and +1.11 BLEU scores and significantly outperforms the vanilla word-level KD baseline. Besides, our method shows higher generalizability on different teacher-student capacity gaps than existing KD techniques.
Existing syntactically-controlled paraphrase generation (SPG) models perform promisingly with human-annotated or well-chosen syntactic templates. However, the difficulty of obtaining such templates actually hinders the practical application of SPG models. For one thing, the prohibitive cost makes it unfeasible to manually design decent templates for every source sentence. For another, the templates automatically retrieved by current heuristic methods are usually unreliable for SPG models to generate qualified paraphrases. To escape this dilemma, we propose a novel Quality-based Syntactic Template Retriever (QSTR) to retrieve templates based on the quality of the to-be-generated paraphrases. Furthermore, for situations requiring multiple paraphrases for each source sentence, we design a Diverse Templates Search (DTS) algorithm, which can enhance the diversity between paraphrases without sacrificing quality. Experiments demonstrate that QSTR can significantly surpass existing retrieval methods in generating high-quality paraphrases and even perform comparably with human-annotated templates in terms of reference-free metrics. Additionally, human evaluation and the performance on downstream tasks using our generated paraphrases for data augmentation showcase the potential of our QSTR and DTS algorithm in practical scenarios.
Neural machine translation (NMT) models are known to be fragile to noisy inputs from automatic speech recognition (ASR) systems. Existing methods are usually tailored for robustness against only homophone errors which account for a small portion of realistic ASR errors. In this paper, we propose an adversarial example generation method based on confusion sets that contain words easily confusable with a target word by ASR to conduct adversarial training for NMT models. Specifically, an adversarial example is generated from the perspective of acoustic relations instead of the traditional uniform or unigram sampling from the confusion sets. Experiments on different test sets with hand-crafted and real-world noise demonstrate the effectiveness of our method over previous methods. Moreover, our approach can achieve improvements on the clean test set.
Token-level adaptive training approaches can alleviate the token imbalance problem and thus improve neural machine translation, through re-weighting the losses of different target tokens based on specific statistical metrics (e.g., token frequency or mutual information). Given that standard translation models make predictions on the condition of previous target contexts, we argue that the above statistical metrics ignore target context information and may assign inappropriate weights to target tokens. While one possible solution is to directly take target contexts into these statistical metrics, the target-context-aware statistical computing is extremely expensive, and the corresponding storage overhead is unrealistic. To solve the above issues, we propose a target-context-aware metric, named conditional bilingual mutual information (CBMI), which makes it feasible to supplement target context information for statistical metrics. Particularly, our CBMI can be formalized as the log quotient of the translation model probability and language model probability by decomposing the conditional joint distribution. Thus CBMI can be efficiently calculated during model training without any pre-specific statistical calculations and large storage overhead. Furthermore, we propose an effective adaptive training approach based on both the token- and sentence-level CBMI. Experimental results on WMT14 English-German and WMT19 Chinese-English tasks show our approach can significantly outperform the Transformer baseline and other related methods.
Translation suggestion (TS) models are used to automatically provide alternative suggestions for incorrect spans in sentences generated by machine translation. This paper introduces the system used in our submission to the WMT’22 Translation Suggestion shared task. Our system is based on the ensemble of different translation architectures, including Transformer, SA-Transformer, and DynamicConv. We use three strategies to construct synthetic data from parallel corpora to compensate for the lack of supervised data. In addition, we introduce a multi-phase pre-training strategy, adding an additional pre-training phase with in-domain data. We rank second and third on the English-German and English-Chinese bidirectional tasks, respectively.