Sopan Khosla


pdf bib
Team JARS: DialDoc Subtask 1 - Improved Knowledge Identification with Supervised Out-of-Domain Pretraining
Sopan Khosla | Justin Lovelace | Ritam Dutt | Adithya Pratapa
Proceedings of the 1st Workshop on Document-grounded Dialogue and Conversational Question Answering (DialDoc 2021)

In this paper, we discuss our submission for DialDoc subtask 1. The subtask requires systems to extract knowledge from FAQ-type documents vital to reply to a user’s query in a conversational setting. We experiment with pretraining a BERT-based question-answering model on different QA datasets from MRQA, as well as conversational QA datasets like CoQA and QuAC. Our results show that models pretrained on CoQA and QuAC perform better than their counterparts that are pretrained on MRQA datasets. Our results also indicate that adding more pretraining data does not necessarily result in improved performance. Our final model, which is an ensemble of AlBERT-XL pretrained on CoQA and QuAC independently, with the chosen answer having the highest average probability score, achieves an F1-Score of 70.9% on the official test-set.

pdf bib
FanfictionNLP: A Text Processing Pipeline for Fanfiction
Michael Yoder | Sopan Khosla | Qinlan Shen | Aakanksha Naik | Huiming Jin | Hariharan Muralidharan | Carolyn Rosé
Proceedings of the Third Workshop on Narrative Understanding

Fanfiction presents an opportunity as a data source for research in NLP, education, and social science. However, answering specific research questions with this data is difficult, since fanfiction contains more diverse writing styles than formal fiction. We present a text processing pipeline for fanfiction, with a focus on identifying text associated with characters. The pipeline includes modules for character identification and coreference, as well as the attribution of quotes and narration to those characters. Additionally, the pipeline contains a novel approach to character coreference that uses knowledge from quote attribution to resolve pronouns within quotes. For each module, we evaluate the effectiveness of various approaches on 10 annotated fanfiction stories. This pipeline outperforms tools developed for formal fiction on the tasks of character coreference and quote attribution

pdf bib
Evaluating the Impact of a Hierarchical Discourse Representation on Entity Coreference Resolution Performance
Sopan Khosla | James Fiacco | Carolyn Rosé
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work on entity coreference resolution (CR) follows current trends in Deep Learning applied to embeddings and relatively simple task-related features. SOTA models do not make use of hierarchical representations of discourse structure. In this work, we leverage automatically constructed discourse parse trees within a neural approach and demonstrate a significant improvement on two benchmark entity coreference-resolution datasets. We explore how the impact varies depending upon the type of mention.

pdf bib
Generating SOAP Notes from Doctor-Patient Conversations Using Modular Summarization Techniques
Kundan Krishna | Sopan Khosla | Jeffrey Bigham | Zachary C. Lipton
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Following each patient visit, physicians draft long semi-structured clinical summaries called SOAP notes. While invaluable to clinicians and researchers, creating digital SOAP notes is burdensome, contributing to physician burnout. In this paper, we introduce the first complete pipelines to leverage deep summarization models to generate these notes based on transcripts of conversations between physicians and patients. After exploring a spectrum of methods across the extractive-abstractive spectrum, we propose Cluster2Sent, an algorithm that (i) extracts important utterances relevant to each summary section; (ii) clusters together related utterances; and then (iii) generates one summary sentence per cluster. Cluster2Sent outperforms its purely abstractive counterpart by 8 ROUGE-1 points, and produces significantly more factual and coherent sentences as assessed by expert human evaluators. For reproducibility, we demonstrate similar benefits on the publicly available AMI dataset. Our results speak to the benefits of structuring summaries into sections and annotating supporting evidence when constructing summarization corpora.

pdf bib
Counterfactuals to Control Latent Disentangled Text Representations for Style Transfer
Sharmila Reddy Nangi | Niyati Chhaya | Sopan Khosla | Nikhil Kaushik | Harshit Nyati
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Disentanglement of latent representations into content and style spaces has been a commonly employed method for unsupervised text style transfer. These techniques aim to learn the disentangled representations and tweak them to modify the style of a sentence. In this paper, we propose a counterfactual-based method to modify the latent representation, by posing a ‘what-if’ scenario. This simple and disciplined approach also enables a fine-grained control on the transfer strength. We conduct experiments with the proposed methodology on multiple attribute transfer tasks like Sentiment, Formality and Excitement to support our hypothesis.


pdf bib
Using Type Information to Improve Entity Coreference Resolution
Sopan Khosla | Carolyn Rose
Proceedings of the First Workshop on Computational Approaches to Discourse

Coreference resolution (CR) is an essential part of discourse analysis. Most recently, neural approaches have been proposed to improve over SOTA models from earlier paradigms. So far none of the published neural models leverage external semantic knowledge such as type information. This paper offers the first such model and evaluation, demonstrating modest gains in accuracy by introducing either gold standard or predicted types. In the proposed approach, type information serves both to (1) improve mention representation and (2) create a soft type consistency check between coreference candidate mentions. Our evaluation covers two different grain sizes of types over four different benchmark corpora.

pdf bib
MedFilter: Improving Extraction of Task-relevant Utterances through Integration of Discourse Structure and Ontological Knowledge
Sopan Khosla | Shikhar Vashishth | Jill Fain Lehman | Carolyn Rose
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Information extraction from conversational data is particularly challenging because the task-centric nature of conversation allows for effective communication of implicit information by humans, but is challenging for machines. The challenges may differ between utterances depending on the role of the speaker within the conversation, especially when relevant expertise is distributed asymmetrically across roles. Further, the challenges may also increase over the conversation as more shared context is built up through information communicated implicitly earlier in the dialogue. In this paper, we propose the novel modeling approach MedFilter, which addresses these insights in order to increase performance at identifying and categorizing task-relevant utterances, and in so doing, positively impacts performance at a downstream information extraction task. We evaluate this approach on a corpus of nearly 7,000 doctor-patient conversations where MedFilter is used to identify medically relevant contributions to the discussion (achieving a 10% improvement over SOTA baselines in terms of area under the PR curve). Identifying task-relevant utterances benefits downstream medical processing, achieving improvements of 15%, 105%, and 23% respectively for the extraction of symptoms, medications, and complaints.

pdf bib
LTIatCMU at SemEval-2020 Task 11: Incorporating Multi-Level Features for Multi-Granular Propaganda Span Identification
Sopan Khosla | Rishabh Joshi | Ritam Dutt | Alan W Black | Yulia Tsvetkov
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper we describe our submission for the task of Propaganda Span Identification in news articles. We introduce a BERT-BiLSTM based span-level propaganda classification model that identifies which token spans within the sentence are indicative of propaganda. The ”multi-granular” model incorporates linguistic knowledge at various levels of text granularity, including word, sentence and document level syntactic, semantic and pragmatic affect features, which significantly improve model performance, compared to its language-agnostic variant. To facilitate better representation learning, we also collect a corpus of 10k news articles, and use it for fine-tuning the model. The final model is a majority-voting ensemble which learns different propaganda class boundaries by leveraging different subsets of incorporated knowledge.


pdf bib
Aff2Vec: Affect–Enriched Distributional Word Representations
Sopan Khosla | Niyati Chhaya | Kushal Chawla
Proceedings of the 27th International Conference on Computational Linguistics

Human communication includes information, opinions and reactions. Reactions are often captured by the affective-messages in written as well as verbal communications. While there has been work in affect modeling and to some extent affective content generation, the area of affective word distributions is not well studied. Synsets and lexica capture semantic relationships across words. These models, however, lack in encoding affective or emotional word interpretations. Our proposed model, Aff2Vec, provides a method for enriched word embeddings that are representative of affective interpretations of words. Aff2Vec outperforms the state-of-the-art in intrinsic word-similarity tasks. Further, the use of Aff2Vec representations outperforms baseline embeddings in downstream natural language understanding tasks including sentiment analysis, personality detection, and frustration prediction.

pdf bib
EmotionX-AR: CNN-DCNN autoencoder based Emotion Classifier
Sopan Khosla
Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media

In this paper, we model emotions in EmotionLines dataset using a convolutional-deconvolutional autoencoder (CNN-DCNN) framework. We show that adding a joint reconstruction loss improves performance. Quantitative evaluation with jointly trained network, augmented with linguistic features, reports best accuracies for emotion prediction; namely joy, sadness, anger, and neutral emotion in text.