Sosuke Nishikawa


pdf bib
A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text Classification
Sosuke Nishikawa | Ikuya Yamada | Yoshimasa Tsuruoka | Isao Echizen
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)

We present a multilingual bag-of-entities model that effectively boosts the performance of zero-shot cross-lingual text classification by extending a multilingual pre-trained language model (e.g., M-BERT). It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier. This enables entities described in multiple languages to be represented using shared embeddings. A model trained on entity features in a resource-rich language can thus be directly applied to other languages. Our experimental results on cross-lingual topic classification (using the MLDoc and TED-CLDC datasets) and entity typing (using the SHINRA2020-ML dataset) show that the proposed model consistently outperforms state-of-the-art models.

pdf bib
EASE: Entity-Aware Contrastive Learning of Sentence Embedding
Sosuke Nishikawa | Ryokan Ri | Ikuya Yamada | Yoshimasa Tsuruoka | Isao Echizen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present EASE, a novel method for learning sentence embeddings via contrastive learning between sentences and their related entities. The advantage of using entity supervision is twofold: (1) entities have been shown to be a strong indicator of text semantics and thus should provide rich training signals for sentence embeddings; (2) entities are defined independently of languages and thus offer useful cross-lingual alignment supervision. We evaluate EASE against other unsupervised models both in monolingual and multilingual settings. We show that EASE exhibits competitive or better performance in English semantic textual similarity (STS) and short text clustering (STC) tasks and it significantly outperforms baseline methods in multilingual settings on a variety of tasks. Our source code, pre-trained models, and newly constructed multi-lingual STC dataset are available at


pdf bib
Data Augmentation with Unsupervised Machine Translation Improves the Structural Similarity of Cross-lingual Word Embeddings
Sosuke Nishikawa | Ryokan Ri | Yoshimasa Tsuruoka
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Unsupervised cross-lingual word embedding(CLWE) methods learn a linear transformation matrix that maps two monolingual embedding spaces that are separately trained with monolingual corpora. This method relies on the assumption that the two embedding spaces are structurally similar, which does not necessarily hold true in general. In this paper, we argue that using a pseudo-parallel corpus generated by an unsupervised machine translation model facilitates the structural similarity of the two embedding spaces and improves the quality of CLWEs in the unsupervised mapping method. We show that our approach outperforms other alternative approaches given the same amount of data, and, through detailed analysis, we show that data augmentation with the pseudo data from unsupervised machine translation is especially effective for mapping-based CLWEs because (1) the pseudo data makes the source and target corpora (partially) parallel; (2) the pseudo data contains information on the original language that helps to learn similar embedding spaces between the source and target languages.