Sourjyadip Ray


2024

pdf bib
ERVQA: A Dataset to Benchmark the Readiness of Large Vision Language Models in Hospital Environments
Sourjyadip Ray | Kushal Gupta | Soumi Kundu | Dr Payal Arvind Kasat | Somak Aditya | Pawan Goyal
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The global shortage of healthcare workers has demanded the development of smart healthcare assistants, which can help monitor and alert healthcare workers when necessary. We examine the healthcare knowledge of existing Large Vision Language Models (LVLMs) via the Visual Question Answering (VQA) task in hospital settings through expert annotated open-ended questions. We introduce the Emergency Room Visual Question Answering (ERVQA) dataset, consisting of <image, question, answer> triplets covering diverse emergency room scenarios, a seminal benchmark for LVLMs. By developing a detailed error taxonomy and analyzing answer trends, we reveal the nuanced nature of the task. We benchmark state-of-the-art open-source and closed LVLMs using traditional and adapted VQA metrics: Entailment Score and CLIPScore Confidence. Analyzing errors across models, we infer trends based on properties like decoder type, model size, and in-context examples. Our findings suggest the ERVQA dataset presents a highly complex task, highlighting the need for specialized, domain-specific solutions.

pdf bib
SERPENT-VLM : Self-Refining Radiology Report Generation Using Vision Language Models
Manav Kapadnis | Sohan Patnaik | Abhilash Nandy | Sourjyadip Ray | Pawan Goyal | Debdoot Sheet
Proceedings of the 6th Clinical Natural Language Processing Workshop

Radiology Report Generation (R2Gen) demonstrates how Multi-modal Large Language Models (MLLMs) can automate the creation of accurate and coherent radiological reports. Existing methods often hallucinate details in text-based reports that don’t accurately reflect the image content. To mitigate this, we introduce a novel strategy, SERPENT-VLM (SElf Refining Radiology RePort GENeraTion using Vision Language Models), which improves the R2Gen task by integrating a self-refining mechanism into the MLLM framework. We employ a unique self-supervised loss that leverages similarity between pooled image representations and the contextual representations of the generated radiological text, alongside the standard Causal Language Modeling objective, to refine image-text representations. This allows the model to scrutinize and align the generated text through dynamic interaction between a given image and the generated text, therefore reducing hallucination and continuously enhancing nuanced report generation. SERPENT-VLM outperforms existing baselines such as LlaVA-Med, BiomedGPT, etc., achieving SoTA performance on the IU X-ray and Radiology Objects in COntext (ROCO) datasets, and also proves to be robust against noisy images. A qualitative case study emphasizes the significant advancements towards more sophisticated MLLM frameworks for R2Gen, opening paths for further research into self-supervised refinement in the medical imaging domain.

2023

pdf bib
Intent Identification and Entity Extraction for Healthcare Queries in Indic Languages
Ankan Mullick | Ishani Mondal | Sourjyadip Ray | Raghav R | G Chaitanya | Pawan Goyal
Findings of the Association for Computational Linguistics: EACL 2023

Scarcity of data and technological limitations for resource-poor languages in developing countries like India poses a threat to the development of sophisticated NLU systems for healthcare. To assess the current status of various state-of-the-art language models in healthcare, this paper studies the problem by initially proposing two different Healthcare datasets, Indian Healthcare Query Intent-WebMD and 1mg (IHQID-WebMD and IHQID-1mg) and one real world Indian hospital query data in English and multiple Indic languages (Hindi, Bengali, Tamil, Telugu, Marathi and Gujarati) which are annotated with the query intents as well as entities. Our aim is to detect query intents and corresponding entities. We perform extensive experiments on a set of models which in various realistic settings and explore two scenarios based on the access to English data only (less costly) and access to target language data (more expensive). We analyze context specific practical relevancy through empirical analysis. The results, expressed in terms of overall F-score show that our approach is practically useful to identify intents and entities.