Soyoung Yang


2023

pdf bib
Towards Formality-Aware Neural Machine Translation by Leveraging Context Information
Dohee Kim | Yujin Baek | Soyoung Yang | Jaegul Choo
Findings of the Association for Computational Linguistics: EMNLP 2023

Formality is one of the most important linguistic properties to determine the naturalness of translation. Although a target-side context contains formality-related tokens, the sparsity within the context makes it difficult for context-aware neural machine translation (NMT) models to properly discern them. In this paper, we introduce a novel training method to explicitly inform the NMT model by pinpointing key informative tokens using a formality classifier. Given a target context, the formality classifier guides the model to concentrate on the formality-related tokens within the context. Additionally, we modify the standard cross-entropy loss, especially toward the formality-related tokens obtained from the classifier. Experimental results show that our approaches not only improve overall translation quality but also reflect the appropriate formality from the target context.

pdf bib
AniEE: A Dataset of Animal Experimental Literature for Event Extraction
Dohee Kim | Ra Yoo | Soyoung Yang | Hee Yang | Jaegul Choo
Findings of the Association for Computational Linguistics: EMNLP 2023

Event extraction (EE), as a crucial information extraction (IE) task, aims to identify event triggers and their associated arguments from unstructured text, subsequently classifying them into pre-defined types and roles. In the biomedical domain, EE is widely used to extract complex structures representing biological events from literature. Due to the complicated semantics and specialized domain knowledge, it is challenging to construct biomedical event extraction datasets. Additionally, most existing biomedical EE datasets primarily focus on cell experiments or the overall experimental procedures. Therefore, we introduce AniEE, an event extraction dataset concentrated on the animal experiment stage. We establish a novel animal experiment customized entity and event scheme in collaboration with domain experts. We then create an expert-annotated high-quality dataset containing discontinuous entities and nested events and evaluate our dataset on the recent outstanding NER and EE models.

pdf bib
HistRED: A Historical Document-Level Relation Extraction Dataset
Soyoung Yang | Minseok Choi | Youngwoo Cho | Jaegul Choo
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the extensive applications of relation extraction (RE) tasks in various domains, little has been explored in the historical context, which contains promising data across hundreds and thousands of years. To promote the historical RE research, we present HistRED constructed from Yeonhaengnok. Yeonhaengnok is a collection of records originally written in Hanja, the classical Chinese writing, which has later been translated into Korean. HistRED provides bilingual annotations such that RE can be performed on Korean and Hanja texts. In addition, HistRED supports various self-contained subtexts with different lengths, from a sentence level to a document level, supporting diverse context settings for researchers to evaluate the robustness of their RE models. To demonstrate the usefulness of our dataset, we propose a bilingual RE model that leverages both Korean and Hanja contexts to predict relations between entities. Our model outperforms monolingual baselines on HistRED, showing that employing multiple language contexts supplements the RE predictions. The dataset is publicly available at: https://huggingface.co/datasets/Soyoung/HistRED under CC BY-NC-ND 4.0 license.

2021

pdf bib
Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation
Kyeongpil Kang | Kyohoon Jin | Soyoung Yang | Soojin Jang | Jaegul Choo | Youngbin Kim
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Understanding voluminous historical records provides clues on the past in various aspects, such as social and political issues and even natural science facts. However, it is generally difficult to fully utilize the historical records, since most of the documents are not written in a modern language and part of the contents are damaged over time. As a result, restoring the damaged or unrecognizable parts as well as translating the records into modern languages are crucial tasks. In response, we present a multi-task learning approach to restore and translate historical documents based on a self-attention mechanism, specifically utilizing two Korean historical records, ones of the most voluminous historical records in the world. Experimental results show that our approach significantly improves the accuracy of the translation task than baselines without multi-task learning. In addition, we present an in-depth exploratory analysis on our translated results via topic modeling, uncovering several significant historical events.

pdf bib
Unsupervised Neural Machine Translation for Low-Resource Domains via Meta-Learning
Cheonbok Park | Yunwon Tae | TaeHee Kim | Soyoung Yang | Mohammad Azam Khan | Lucy Park | Jaegul Choo
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Unsupervised machine translation, which utilizes unpaired monolingual corpora as training data, has achieved comparable performance against supervised machine translation. However, it still suffers from data-scarce domains. To address this issue, this paper presents a novel meta-learning algorithm for unsupervised neural machine translation (UNMT) that trains the model to adapt to another domain by utilizing only a small amount of training data. We assume that domain-general knowledge is a significant factor in handling data-scarce domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge learned from high-resource domains, to boost the performance of low-resource UNMT. Our model surpasses a transfer learning-based approach by up to 2-3 BLEU scores. Extensive experimental results show that our proposed algorithm is pertinent for fast adaptation and consistently outperforms other baselines.