Sree Prasanna Rajagopal


2024

pdf bib
A Continued Pretrained LLM Approach for Automatic Medical Note Generation
Dong Yuan | Eti Rastogi | Gautam Naik | Sree Prasanna Rajagopal | Sagar Goyal | Fen Zhao | Bharath Chintagunta | Jeffrey Ward
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

LLMs are revolutionizing NLP tasks. However, the use of the most advanced LLMs, such as GPT-4, is often prohibitively expensive for most specialized fields. We introduce HEAL, the first continuously trained 13B LLaMA2-based LLM that is purpose-built for medical conversations and measured on automated scribing. Our results demonstrate that HEAL outperforms GPT-4 and PMC-LLaMA in PubMedQA, with an accuracy of 78.4%. It also achieves parity with GPT-4 in generating medical notes. Remarkably, HEAL surpasses GPT-4 and Med-PaLM 2 in identifying more correct medical concepts and exceeds the performance of human scribes and other comparable models in correctness and completeness.