Sreyan Ghosh


pdf bib
CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a Context Synergized Hyperbolic Network
Sreyan Ghosh | Manan Suri | Purva Chiniya | Utkarsh Tyagi | Sonal Kumar | Dinesh Manocha
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The tremendous growth of social media users interacting in online conversations has led to significant growth in hate speech affecting people from various demographics. Most of the prior works focus on detecting explicit hate speech, which is overt and leverages hateful phrases, with very little work focusing on detecting hate speech that is implicit or denotes hatred through indirect or coded language. In this paper, we present CoSyn, a context synergized neural network that explicitly incorporates user- and conversational-context for detecting implicit hate speech in online conversations. CoSyn introduces novel ways to encode these external contexts and employs a novel context interaction mechanism that clearly captures the interplay between them, making independent assessments of the amounts of information to be retrieved from these noisy contexts. Additionally, it carries out all these operations in the hyperbolic space to account for the scale-free dynamics of social media. We demonstrate the effectiveness of CoSyn on 6 hate speech datasets and show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%. We make our code available.

pdf bib
DALE: Generative Data Augmentation for Low-Resource Legal NLP
Sreyan Ghosh | Chandra Kiran Reddy Evuru | Sonal Kumar | S Ramaneswaran | S Sakshi | Utkarsh Tyagi | Dinesh Manocha
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present DALE, a novel and effective generative Data Augmentation framework for low-resource LEgal NLP. DALE addresses the challenges existing frameworks pose in generating effective data augmentations of legal documents - legal language, with its specialized vocabulary and complex semantics, morphology, and syntax, does not benefit from data augmentations that merely rephrase the source sentence. To address this, DALE, built on an Encoder-Decoder Language Model, is pre-trained on a novel unsupervised text denoising objective based on selective masking - our masking strategy exploits the domain-specific language characteristics of templatized legal documents to mask collocated spans of text. Denoising these spans help DALE acquire broad legal knowledge and develop the ability to generate coherent and diverse augmentations with novel contexts. Finally, DALE performs conditional generation to generate synthetic augmentations for low-resource Legal NLP tasks. We demonstrate the effectiveness of DALE on 13 datasets spanning 6 tasks and 4 low-resource settings. DALE outperforms all our baselines, including LLMs, qualitatively and quantitatively, with absolute improvements of 1%-50%.

pdf bib
ACLM: A Selective-Denoising based Generative Data Augmentation Approach for Low-Resource Complex NER
Sreyan Ghosh | Utkarsh Tyagi | Manan Suri | Sonal Kumar | Ramaneswaran S | Dinesh Manocha
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Complex Named Entity Recognition (NER) is the task of detecting linguistically complex named entities in low-context text. In this paper, we present ACLM Attention-map aware keyword selection for Conditional Language Model fine-tuning), a novel data augmentation approach based on conditional generation, to address the data scarcity problem in low-resource complex NER. ACLM alleviates the context-entity mismatch issue, a problem existing NER data augmentation techniques suffer from and often generates incoherent augmentations by placing complex named entities in the wrong context. ACLM builds on BART and is optimized on a novel text reconstruction or denoising task - we use selective masking (aided by attention maps) to retain the named entities and certain keywords in the input sentence that provide contextually relevant additional knowledge or hints about the named entities. Compared with other data augmentation strategies, ACLM can generate more diverse and coherent augmentations preserving the true word sense of complex entities in the sentence. We demonstrate the effectiveness of ACLM both qualitatively and quantitatively on monolingual, cross-lingual, and multilingual complex NER across various low-resource settings. ACLM outperforms all our neural baselines by a significant margin (1%-36%). In addition, we demonstrate the application of ACLM to other domains that suffer from data scarcity (e.g., biomedical). In practice, ACLM generates more effective and factual augmentations for these domains than prior methods.


pdf bib
Span Extraction Aided Improved Code-mixed Sentiment Classification
Ramaneswaran S | Sean Benhur | Sreyan Ghosh
Proceedings of the Eighth Workshop on Noisy User-generated Text (W-NUT 2022)

Sentiment classification is a fundamental NLP task of detecting the sentiment polarity of a given text. In this paper we show how solving sentiment span extraction as an auxiliary task can help improve final sentiment classification performance in a low-resource code-mixed setup. To be precise, we don’t solve a simple multi-task learning objective, but rather design a unified transformer framework that exploits the bidirectional connection between the two tasks simultaneously. To facilitate research in this direction we release gold-standard human-annotated sentiment span extraction dataset for Tamil-english code-switched texts. Extensive experiments and strong baselines show that our proposed approach outperforms sentiment and span prediction by 1.27% and 2.78% respectively when compared to the best performing MTL baseline. We also establish the generalizability of our approach on the Twitter Sentiment Extraction dataset. We make our code and data publicly available on GitHub


pdf bib
Cisco at SemEval-2021 Task 5: What’s Toxic?: Leveraging Transformers for Multiple Toxic Span Extraction from Online Comments
Sreyan Ghosh | Sonal Kumar
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Social network platforms are generally used to share positive, constructive, and insightful content. However, in recent times, people often get exposed to objectionable content like threat, identity attacks, hate speech, insults, obscene texts, offensive remarks or bullying. Existing work on toxic speech detection focuses on binary classification or on differentiating toxic speech among a small set of categories. This paper describes the system proposed by team Cisco for SemEval-2021 Task 5: Toxic Spans Detection, the first shared task focusing on detecting the spans in the text that attribute to its toxicity, in English language. We approach this problem primarily in two ways: a sequence tagging approach and a dependency parsing approach. In our sequence tagging approach we tag each token in a sentence under a particular tagging scheme. Our best performing architecture in this approach also proved to be our best performing architecture overall with an F1 score of 0.6922, thereby placing us 7th on the final evaluation phase leaderboard. We also explore a dependency parsing approach where we extract spans from the input sentence under the supervision of target span boundaries and rank our spans using a biaffine model. Finally, we also provide a detailed analysis of our results and model performance in our paper.