Stamatis Outsios


pdf bib
Evaluation of Greek Word Embeddings
Stamatis Outsios | Christos Karatsalos | Konstantinos Skianis | Michalis Vazirgiannis
Proceedings of the 12th Language Resources and Evaluation Conference

Since word embeddings have been the most popular input for many NLP tasks, evaluating their quality is critical. Most research efforts are focusing on English word embeddings. This paper addresses the problem of training and evaluating such models for the Greek language. We present a new word analogy test set considering the original English Word2vec analogy test set and some specific linguistic aspects of the Greek language as well. Moreover, we create a Greek version of WordSim353 test collection for a basic evaluation of word similarities. Produced resources are available for download. We test seven word vector models and our evaluation shows that we are able to create meaningful representations. Last, we discover that the morphological complexity of the Greek language and polysemy can influence the quality of the resulting word embeddings.

pdf bib
An Ensemble Method for Producing Word Representations focusing on the Greek Language
Michalis Lioudakis | Stamatis Outsios | Michalis Vazirgiannis
Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages

In this paper we present a new ensemble method, Continuous Bag-of-Skip-grams (CBOS), that produces high-quality word representations putting emphasis on the Greek language. The CBOS method combines the pioneering approaches for learning word representations: Continuous Bag-of-Words (CBOW) and Continuous Skip-gram. These methods are compared through intrinsic and extrinsic evaluation tasks on three different sources of data: the English Wikipedia corpus, the Greek Wikipedia corpus, and the Greek Web Content corpus. By comparing these methods across different tasks and datasets, it is evident that the CBOS method achieves state-of-the-art performance.