Stefan Constantin


2023

pdf bib
End-to-End Evaluation for Low-Latency Simultaneous Speech Translation
Christian Huber | Tu Anh Dinh | Carlos Mullov | Ngoc-Quan Pham | Thai Binh Nguyen | Fabian Retkowski | Stefan Constantin | Enes Ugan | Danni Liu | Zhaolin Li | Sai Koneru | Jan Niehues | Alexander Waibel
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The challenge of low-latency speech translation has recently draw significant interest in the research community as shown by several publications and shared tasks. Therefore, it is essential to evaluate these different approaches in realistic scenarios. However, currently only specific aspects of the systems are evaluated and often it is not possible to compare different approaches. In this work, we propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions. The evaluation is carried out in an end-to-end fashion. This includes the segmentation of the audio as well as the run-time of the different components. Secondly, we compare different approaches to low-latency speech translation using this framework. We evaluate models with the option to revise the output as well as methods with fixed output. Furthermore, we directly compare state-of-the-art cascaded as well as end-to-end systems. Finally, the framework allows to automatically evaluate the translation quality as well as latency and also provides a web interface to show the low-latency model outputs to the user.

2022

pdf bib
Error correction and extraction in request dialogs
Stefan Constantin | Alex Waibel
Proceedings of the 5th International Conference on Natural Language and Speech Processing (ICNLSP 2022)

2019

pdf bib
Incremental processing of noisy user utterances in the spoken language understanding task
Stefan Constantin | Jan Niehues | Alex Waibel
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

The state-of-the-art neural network architectures make it possible to create spoken language understanding systems with high quality and fast processing time. One major challenge for real-world applications is the high latency of these systems caused by triggered actions with high executions times. If an action can be separated into subactions, the reaction time of the systems can be improved through incremental processing of the user utterance and starting subactions while the utterance is still being uttered. In this work, we present a model-agnostic method to achieve high quality in processing incrementally produced partial utterances. Based on clean and noisy versions of the ATIS dataset, we show how to create datasets with our method to create low-latency natural language understanding components. We get improvements of up to 47.91 absolute percentage points in the metric F1-score.