The IIT-CDIP document collection is the source of several widely used and publicly accessible document understanding datasets. In this paper, manual inspection of 5 datasets derived from IIT-CDIP uncovers the presence of thousands of instances of sensitive personal data, including US Social Security Numbers (SSNs), birth places and dates, and home addresses of individuals. The presence of such sensitive personal data in commonly-used and publicly available datasets is startling and has ethical and potentially legal implications; we believe such sensitive data ought to be removed from the internet. Thus, in this paper, we develop a modular data de-identification pipeline that replaces sensitive data with synthetic, but realistic, data. Via experiments, we demonstrate that this de-identification method preserves the utility of the de-identified documents so that they can continue be used in various document understanding applications. We will release redacted versions of these datasets publicly.
Intent classifiers must be able to distinguish when a user’s utterance does not belong to any supported intent to avoid producing incorrect and unrelated system responses. Although out-of-scope (OOS) detection for intent classifiers has been studied, previous work has not yet studied changes in classifier performance against hard-negative out-of-scope utterances (i.e., inputs that share common features with in-scope data, but are actually out-of-scope). We present an automated technique to generate hard-negative OOS data using ChatGPT. We use our technique to build five new hard-negative OOS datasets, and evaluate each against three benchmark intent classifiers. We show that classifiers struggle to correctly identify hard-negative OOS utterances more than general OOS utterances. Finally, we show that incorporating hard-negative OOS data for training improves model robustness when detecting hard-negative OOS data and general OOS data. Our technique, datasets, and evaluation address an important void in the field, offering a straightforward and inexpensive way to collect hard-negative OOS data and improve intent classifiers’ robustness.
The RVL-CDIP benchmark is widely used for measuring performance on the task of document classification. Despite its widespread use, we reveal several undesirable characteristics of the RVL-CDIP benchmark. These include (1) substantial amounts of label noise, which we estimate to be 8.1% (ranging between 1.6% to 16.9% per document category); (2) presence of many ambiguous or multi-label documents; (3) a large overlap between test and train splits, which can inflate model performance metrics; and (4) presence of sensitive personally-identifiable information like US Social Security numbers (SSNs). We argue that there is a risk in using RVL-CDIP for benchmarking document classifiers, as its limited scope, presence of errors (state-of-the-art models now achieve accuracy error rates that are within our estimated label error rate), and lack of diversity make it less than ideal for benchmarking. We further advocate for the creation of a new document classification benchmark, and provide recommendations for what characteristics such a resource should include.
Dialog systems must be capable of incorporating new skills via updates over time in order to reflect new use cases or deployment scenarios. Similarly, developers of such ML-driven systems need to be able to add new training data to an already-existing dataset to support these new skills. In intent classification systems, problems can arise if training data for a new skill’s intent overlaps semantically with an already-existing intent. We call such cases collisions. This paper introduces the task of intent collision detection between multiple datasets for the purposes of growing a system’s skillset. We introduce several methods for detecting collisions, and evaluate our methods on real datasets that exhibit collisions. To highlight the need for intent collision detection, we show that model performance suffers if new data is added in such a way that does not arbitrate colliding intents. Finally, we use collision detection to construct and benchmark a new dataset, Redwood, which is composed of 451 categories from 13 original intent classification datasets, making it the largest publicly available intent classification benchmark.
Open Information Extraction (OIE) systems seek to compress the factual propositions of a sentence into a series of n-ary tuples. These tuples are useful for downstream tasks in natural language processing like knowledge base creation, textual entailment, and natural language understanding. However, current OIE datasets are limited in both size and diversity. We introduce a new dataset by converting the QA-SRL 2.0 dataset to a large-scale OIE dataset LSOIE. Our LSOIE dataset is 20 times larger than the next largest human-annotated OIE dataset. We construct and evaluate several benchmark OIE models on LSOIE, providing baselines for future improvements on the task. Our LSOIE data, models, and code are made publicly available.
Slot-filling models in task-driven dialog systems rely on carefully annotated training data. However, annotations by crowd workers are often inconsistent or contain errors. Simple solutions like manually checking annotations or having multiple workers label each sample are expensive and waste effort on samples that are correct. If we can identify inconsistencies, we can focus effort where it is needed. Toward this end, we define six inconsistency types in slot-filling annotations. Using three new noisy crowd-annotated datasets, we show that a wide range of inconsistencies occur and can impact system performance if not addressed. We then introduce automatic methods of identifying inconsistencies. Experiments on our new datasets show that these methods effectively reveal inconsistencies in data, though there is further scope for improvement.
Typical machine learning approaches to developing task-oriented dialog systems require the collection and management of large amounts of training data, especially for the tasks of intent classification and slot-filling. Managing this data can be cumbersome without dedicated tools to help the dialog system designer understand the nature of the data. This paper presents a toolkit for analyzing slot-filling and intent classification corpora. We present a toolkit that includes (1) a new lightweight and readable data and file format for intent classification and slot-filling corpora, (2) a new query language for searching intent classification and slot-filling corpora, and (3) tools for understanding the structure and makeup for such corpora. We apply our toolkit to several well-known NLU datasets, and demonstrate that our toolkit can be used to uncover interesting and surprising insights. By releasing our toolkit to the research community, we hope to enable others to develop more robust and intelligent slot-filling and intent classification models.
Diverse data is crucial for training robust models, but crowdsourced text often lacks diversity as workers tend to write simple variations from prompts. We propose a general approach for guiding workers to write more diverse text by iteratively constraining their writing. We show how prior workflows are special cases of our approach, and present a way to apply the approach to dialog tasks such as intent classification and slot-filling. Using our method, we create more challenging versions of test sets from prior dialog datasets and find dramatic performance drops for standard models. Finally, we show that our approach is complementary to recent work on improving data diversity, and training on data collected with our approach leads to more robust models.
In a corpus of data, outliers are either errors: mistakes in the data that are counterproductive, or are unique: informative samples that improve model robustness. Identifying outliers can lead to better datasets by (1) removing noise in datasets and (2) guiding collection of additional data to fill gaps. However, the problem of detecting both outlier types has received relatively little attention in NLP, particularly for dialog systems. We introduce a simple and effective technique for detecting both erroneous and unique samples in a corpus of short texts using neural sentence embeddings combined with distance-based outlier detection. We also present a novel data collection pipeline built atop our detection technique to automatically and iteratively mine unique data samples while discarding erroneous samples. Experiments show that our outlier detection technique is effective at finding errors while our data collection pipeline yields highly diverse corpora that in turn produce more robust intent classification and slot-filling models.
Task-oriented dialog systems need to know when a query falls outside their range of supported intents, but current text classification corpora only define label sets that cover every example. We introduce a new dataset that includes queries that are out-of-scope—i.e., queries that do not fall into any of the system’s supported intents. This poses a new challenge because models cannot assume that every query at inference time belongs to a system-supported intent class. Our dataset also covers 150 intent classes over 10 domains, capturing the breadth that a production task-oriented agent must handle. We evaluate a range of benchmark classifiers on our dataset along with several different out-of-scope identification schemes. We find that while the classifiers perform well on in-scope intent classification, they struggle to identify out-of-scope queries. Our dataset and evaluation fill an important gap in the field, offering a way of more rigorously and realistically benchmarking text classification in task-driven dialog systems.