Stefan Minkov


2025

pdf bib
Towards Creating a Bulgarian Readability Index
Dimitar Kazakov | Stefan Minkov | Ruslana Margova | Irina Temnikova | Ivo Emauilov
Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages

Readability assessment plays a crucial role in education and text accessibility. While numerous indices exist for English and have been extended to Romance and Slavic languages, Bulgarian remains under- served in this regard. This paper reviews established readability metrics across these language families, examining their underlying features and modelling methods. We then report the first attempt to develop a readability index for Bulgarian, using end-of-school-year assessment questions and literary works targeted at children of various ages. Key linguistic attributes, namely, word length, sentence length, syllable count, and information content (based on word frequency), were extracted, and their first two statistical moments, mean and variance, were modelled against grade levels using linear and polynomial regression. Results suggest that polynomial models outperform linear ones by capturing non-linear relationships between textual features and perceived difficulty, but may be harder to interpret. This work provides an initial framework for building a reliable readability measure for Bulgarian, with applications in educational text design, adaptive learning, and corpus annotation.

2024

pdf bib
SM-FEEL-BG - the First Bulgarian Datasets and Classifiers for Detecting Feelings, Emotions, and Sentiments of Bulgarian Social Media Text
Irina Temnikova | Iva Marinova | Silvia Gargova | Ruslana Margova | Alexander Komarov | Tsvetelina Stefanova | Veneta Kireva | Dimana Vyatrova | Nevena Grigorova | Yordan Mandevski | Stefan Minkov
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This article introduces SM-FEEL-BG – the first Bulgarian-language package, containing 6 datasets with Social Media (SM) texts with emotion, feeling, and sentiment labels and 4 classifiers trained on them. All but one dataset from these are freely accessible for research purposes. The largest dataset contains 6000 Twitter, Telegram, and Facebook texts, manually annotated with 21 fine-grained emotion/feeling categories. The fine-grained labels are automatically merged into three coarse-grained sentiment categories, producing a dataset with two parallel sets of labels. Several classification experiments are run on different subsets of the fine-grained categories and their respective sentiment labels with a Bulgarian fine-tuned BERT. The highest Acc. reached was 0.61 for 16 emotions and 0.70 for 11 emotions (incl. 310 ChatGPT 4-generated texts). The sentiments Acc. of the 11 emotions dataset was also the highest (0.79). As Facebook posts cannot be shared, we ran experiments on the Twitter and Telegram subset of the 11 emotions dataset, obtaining 0.73 Acc. for emotions and 0.80 for sentiments. The article describes the annotation procedures, guidelines, experiments, and results. We believe that this package will be of significant benefit to researchers working on emotion detection and sentiment analysis in Bulgarian.