Stefan Schouten
2023
Reasoning about Ambiguous Definite Descriptions
Stefan Schouten
|
Peter Bloem
|
Ilia Markov
|
Piek Vossen
Findings of the Association for Computational Linguistics: EMNLP 2023
Natural language reasoning plays an increasingly important role in improving language models’ ability to solve complex language understanding tasks. An interesting use case for reasoning is the resolution of context-dependent ambiguity. But no resources exist to evaluate how well Large Language Models can use explicit reasoning to resolve ambiguity in language. We propose to use ambiguous definite descriptions for this purpose and create and publish the first benchmark dataset consisting of such phrases. Our method includes all information required to resolve the ambiguity in the prompt, which means a model does not require anything but reasoning to do well. We find this to be a challenging task for recent LLMs. Code and data available at: https://github.com/sfschouten/exploiting-ambiguity
2022
Probing the representations of named entities in Transformer-based Language Models
Stefan Schouten
|
Peter Bloem
|
Piek Vossen
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
In this work we analyze the named entity representations learned by Transformer-based language models. We investigate the role entities play in two tasks: a language modeling task, and a sequence classification task. For this purpose we collect a novel news topic classification dataset with 12 topics called RefNews-12. We perform two complementary methods of analysis. First, we use diagnostic models allowing us to quantify to what degree entity information is present in the hidden representations. Second, we perform entity mention substitution to measure how substitute-entities with different properties impact model performance. By controlling for model uncertainty we are able to show that entities are identified, and depending on the task, play a measurable role in the model’s predictions. Additionally, we show that the entities’ types alone are not enough to account for this. Finally, we find that the the frequency with which entities occur are important for the masked language modeling task, and that the entities’ distributions over topics are important for topic classification.