Stefan Schroedl
2022
Improving Large-Scale Conversational Assistants using Model Interpretation based Training Sample Selection
Stefan Schroedl
|
Manoj Kumar
|
Kiana Hajebi
|
Morteza Ziyadi
|
Sriram Venkatapathy
|
Anil Ramakrishna
|
Rahul Gupta
|
Pradeep Natarajan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
This paper presents an approach to identify samples from live traffic where the customer implicitly communicated satisfaction with Alexa’s responses, by leveraging interpretations of model behavior. Such customer signals are noisy and adding a large number of samples from live traffic to training set makes re-training infeasible. Our work addresses these challenges by identifying a small number of samples that grow training set by ~0.05% while producing statistically significant improvements in both offline and online tests.
Search
Fix data
Co-authors
- Rahul Gupta 1
- Kiana Hajebi 1
- Manoj Kumar 1
- Pradeep Natarajan 1
- Anil Ramakrishna 1
- show all...