Exploring and understanding language data is a fundamental stage in all areas dealing with human language. It allows NLP practitioners to uncover quality concerns and harmful biases in data before training, and helps linguists and social scientists to gain insight into language use and human behavior. Yet, there is currently a lack of a unified, customizable tool to seamlessly inspect and visualize language variation and bias across multiple variables, language units, and diverse metrics that go beyond descriptive statistics. In this paper, we introduce Variationist, a highly-modular, extensible, and task-agnostic tool that fills this gap. Variationist handles at once a potentially unlimited combination of variable types and semantics across diversity and association metrics with regards to the language unit of choice, and orchestrates the creation of up to five-dimensional interactive charts for over 30 variable type-semantics combinations. Through our case studies on computational dialectology, human label variation, and text generation, we show how Variationist enables researchers from different disciplines to effortlessly answer specific research questions or unveil undesired associations in language data. A Python library, code, documentation, and tutorials are made publicly available to the research community.
In this work we present a system for multilingual olfactory information extraction covering six European languages, introducing new models to extract olfactory information from large amounts of text in a structured and scalable way. For the task we rely on a supervised multi-task approach to detect olfactory related text adopting a FrameNet-like structure, identifying the lexical units triggering the smell event and a related set of frame elements.
Olfaction is a rather understudied sense compared to the other senses. In NLP, however, there have been recent attempts to develop taxonomies and benchmarks specifically designed to capture smell-related information. In this work, we further extend this research line by presenting a supervised system for olfactory information extraction in English. We cast this problem as a token classification task and build a system that identifies smell words, smell sources and qualities. The classifier is then applied to a set of English historical corpora, covering different domains and written in a time period between the 15th and the 20th Century. A qualitative analysis of the extracted data shows that they can be used to infer interesting information about smelly items such as tea and tobacco from a diachronical perspective, supporting historical investigation with corpus-based evidence.
In this work, we investigate olfactory perception shifts, analysing how the description of the smells emitted by specific sources has changed over time. We first create a benchmark of selected smell sources, relying upon existing historical studies related to olfaction. We also collect an English text corpus by retrieving large collections of documents from freely available resources, spanning from 1500 to 2000 and covering different domains. We label such corpus using a system for olfactory information extraction inspired by frame semantics, where the semantic roles around the smell sources in the benchmark are marked. We then analyse how the roles describing Qualities of smell sources change over time and how they can contribute to characterise perception shifts, also in comparison with more standard statistical approaches.
We present a benchmark in six European languages containing manually annotated information about olfactory situations and events following a FrameNet-like approach. The documents selection covers ten domains of interest to cultural historians in the olfactory domain and includes texts published between 1620 to 1920, allowing a diachronic analysis of smell descriptions. With this work, we aim to foster the development of olfactory information extraction approaches as well as the analysis of changes in smell descriptions over time.
Olfactory references play a crucial role in our memory and, more generally, in our experiences, since researchers have shown that smell is the sense that is most directly connected with emotions. Nevertheless, only few works in NLP have tried to capture this sensory dimension from a computational perspective. One of the main challenges is the lack of a systematic and consistent taxonomy of olfactory information, where concepts are organised also in a multi-lingual perspective. WordNet represents a valuable starting point in this direction, which can be semi-automatically extended taking advantage of Google n-grams and of existing language models. In this work we describe the process that has led to the semi-automatic development of a taxonomy for olfactory information in four languages (English, French, German and Italian), detailing the different steps and the intermediate evaluations. Along with being multi-lingual, the taxonomy also encloses temporal marks for olfactory terms thus making it a valuable resource for historical content analysis. The resource has been released and is freely available.
Recent works in historical language processing have shown that transformer-based models can be successfully created using historical corpora, and that using them for analysing and classifying data from the past can be beneficial compared to standard transformer models. This has led to the creation of BERT-like models for different languages trained with digital repositories from the past. In this work we introduce the Italian version of historical BERT, which we call BERToldo. We evaluate the model on the task of PoS-tagging Dante Alighieri’s works, considering not only the tagger performance but also the model size and the time needed to train it. We also address the problem of duplicated data, which is rather common for languages with a limited availability of historical corpora. We show that deduplication reduces training time without affecting performance. The model and its smaller versions are all made available to the research community.
Since state-of-the-art approaches to offensive language detection rely on supervised learning, it is crucial to quickly adapt them to the continuously evolving scenario of social media. While several approaches have been proposed to tackle the problem from an algorithmic perspective, so to reduce the need for annotated data, less attention has been paid to the quality of these data. Following a trend that has emerged recently, we focus on the level of agreement among annotators while selecting data to create offensive language datasets, a task involving a high level of subjectivity. Our study comprises the creation of three novel datasets of English tweets covering different topics and having five crowd-sourced judgments each. We also present an extensive set of experiments showing that selecting training and test data according to different levels of annotators’ agreement has a strong effect on classifiers performance and robustness. Our findings are further validated in cross-domain experiments and studied using a popular benchmark dataset. We show that such hard cases, where low agreement is present, are not necessarily due to poor-quality annotation and we advocate for a higher presence of ambiguous cases in future datasets, in order to train more robust systems and better account for the different points of view expressed online.
Although olfactory references play a crucial role in our cultural memory, only few works in NLP have tried to capture them from a computational perspective. Currently, the main challenge is not much the development of technological components for olfactory information extraction, given recent advances in semantic processing and natural language understanding, but rather the lack of a theoretical framework to capture this information from a linguistic point of view, as a preliminary step towards the development of automated systems. Therefore, in this work we present the annotation guidelines, developed with the help of history scholars and domain experts, aimed at capturing all the relevant elements involved in olfactory situations or events described in texts. These guidelines have been inspired by FrameNet annotation, but underwent some adaptations, which are detailed in this paper. Furthermore, we present a case study concerning the annotation of olfactory situations in English historical travel writings describing trips to Italy. An analysis of the most frequent role fillers show that olfactory descriptions pertain to some typical domains such as religion, food, nature, ancient past, poor sanitation, all supporting the creation of a stereotypical imagery related to Italy. On the other hand, positive feelings triggered by smells are prevalent, and contribute to framing travels to Italy as an exciting experience involving all senses.
Recent studies have demonstrated the effectiveness of cross-lingual language model pre-training on different NLP tasks, such as natural language inference and machine translation. In our work, we test this approach on social media data, which are particularly challenging to process within this framework, since the limited length of the textual messages and the irregularity of the language make it harder to learn meaningful encodings. More specifically, we propose a hybrid emoji-based Masked Language Model (MLM) to leverage the common information conveyed by emojis across different languages and improve the learned cross-lingual representation of short text messages, with the goal to perform zero- shot abusive language detection. We compare the results obtained with the original MLM to the ones obtained by our method, showing improved performance on German, Italian and Spanish.
In this paper we present our submission to sub-task A at SemEval 2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval2). For Danish, Turkish, Arabic and Greek, we develop an architecture based on transfer learning and relying on a two-channel BERT model, in which the English BERT and the multilingual one are combined after creating a machine-translated parallel corpus for each language in the task. For English, instead, we adopt a more standard, single-channel approach. We find that, in a multilingual scenario, with some languages having small training data, using parallel BERT models with machine translated data can give systems more stability, especially when dealing with noisy data. The fact that machine translation on social media data may not be perfect does not hurt the overall classification performance.
Social media platforms like Twitter and Instagram face a surge in cyberbullying phenomena against young users and need to develop scalable computational methods to limit the negative consequences of this kind of abuse. Despite the number of approaches recently proposed in the Natural Language Processing (NLP) research area for detecting different forms of abusive language, the issue of identifying cyberbullying phenomena at scale is still an unsolved problem. This is because of the need to couple abusive language detection on textual message with network analysis, so that repeated attacks against the same person can be identified. In this paper, we present a system to monitor cyberbullying phenomena by combining message classification and social network analysis. We evaluate the classification module on a data set built on Instagram messages, and we describe the cyberbullying monitoring user interface.
Although WhatsApp is used by teenagers as one major channel of cyberbullying, such interactions remain invisible due to the app privacy policies that do not allow ex-post data collection. Indeed, most of the information on these phenomena rely on surveys regarding self-reported data. In order to overcome this limitation, we describe in this paper the activities that led to the creation of a WhatsApp dataset to study cyberbullying among Italian students aged 12-13. We present not only the collected chats with annotations about user role and type of offense, but also the living lab created in a collaboration between researchers and schools to monitor and analyse cyberbullying. Finally, we discuss some open issues, dealing with ethical, operational and epistemic aspects.
We present a topic-based analysis of agreement and disagreement in political manifestos, which relies on a new method for topic detection based on key concept clustering. Our approach outperforms both standard techniques like LDA and a state-of-the-art graph-based method, and provides promising initial results for this new task in computational social science.
We present RAMBLE ON, an application integrating a pipeline for frame-based information extraction and an interface to track and display movement trajectories. The code of the extraction pipeline and a navigator are freely available; moreover we display in a demonstrator the outcome of a case study carried out on trajectories of notable persons of the XX Century.
The automated comparison of points of view between two politicians is a very challenging task, due not only to the lack of annotated resources, but also to the different dimensions participating to the definition of agreement and disagreement. In order to shed light on this complex task, we first carry out a pilot study to manually annotate the components involved in detecting agreement and disagreement. Then, based on these findings, we implement different features to capture them automatically via supervised classification. We do not focus on debates in dialogical form, but we rather consider sets of documents, in which politicians may express their position with respect to different topics in an implicit or explicit way, like during an electoral campaign. We create and make available three different datasets.
This paper presents QUANDHO (QUestion ANswering Data for italian HistOry), an Italian question answering dataset created to cover a specific domain, i.e. the history of Italy in the first half of the XX century. The dataset includes questions manually classified and annotated with Lexical Answer Types, and a set of question-answer pairs. This resource, freely available for research purposes, has been used to retrain a domain independent question answering system so to improve its performances in the domain of interest. Ongoing experiments on the development of a question classifier and an automatic tagger of Lexical Answer Types are also presented.
Shared and internationally recognized benchmarks are fundamental for the development of any computational system. We aim to help the research community working on compositional distributional semantic models (CDSMs) by providing SICK (Sentences Involving Compositional Knowldedge), a large size English benchmark tailored for them. SICK consists of about 10,000 English sentence pairs that include many examples of the lexical, syntactic and semantic phenomena that CDSMs are expected to account for, but do not require dealing with other aspects of existing sentential data sets (idiomatic multiword expressions, named entities, telegraphic language) that are not within the scope of CDSMs. By means of crowdsourcing techniques, each pair was annotated for two crucial semantic tasks: relatedness in meaning (with a 5-point rating scale as gold score) and entailment relation between the two elements (with three possible gold labels: entailment, contradiction, and neutral). The SICK data set was used in SemEval-2014 Task 1, and it freely available for research purposes.