Steinunn Rut Friðriksdóttir


pdf bib
Fictionary-Based Games for Language Resource Creation
Steinunn Rut Friðriksdóttir | Hafsteinn Einarsson
Proceedings of the 2nd Workshop on Novel Incentives in Data Collection from People: models, implementations, challenges and results within LREC 2022

In this paper, we present a novel approach to data collection for natural language processing (NLP), linguistic research and lexicographic work. Using the parlor game Fictionary as a framework, data can be crowd-sourced in a gamified manner, which carries the potential of faster, cheaper and better data when compared to traditional methods due to the engaging and competitive nature of the game. To improve data quality, the game includes a built-in review process where players review each other’s data and evaluate its quality. The paper proposes several games that can be used within this framework, and explains the value of the data generated by their use. These proposals include games that collect named entities along with their corresponding type tags, question-answer pairs, translation pairs and neologism, to name only a few. We are currently working on a digital platform that will host these games in Icelandic but wish to open the discussion around this topic and encourage other researchers to explore their own versions of the proposed games, all of which are language-independent.

pdf bib
IceBATS: An Icelandic Adaptation of the Bigger Analogy Test Set
Steinunn Rut Friðriksdóttir | Hjalti Daníelsson | Steinþór Steingrímsson | Einar Sigurdsson
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Word embedding models have become commonplace in a wide range of NLP applications. In order to train and use the best possible models, accurate evaluation is needed. For extrinsic evaluation of word embedding models, analogy evaluation sets have been shown to be a good quality estimator. We introduce an Icelandic adaptation of a large analogy dataset, BATS, evaluate it on three different word embedding models and show that our evaluation set is apt at measuring the capabilities of such models.

pdf bib
Building an Icelandic Entity Linking Corpus
Steinunn Rut Friðriksdóttir | Valdimar Ágúst Eggertsson | Benedikt Geir Jóhannesson | Hjalti Daníelsson | Hrafn Loftsson | Hafsteinn Einarsson
Proceedings of the Workshop on Dataset Creation for Lower-Resourced Languages within the 13th Language Resources and Evaluation Conference

In this paper, we present the first Entity Linking corpus for Icelandic. We describe our approach of using a multilingual entity linking model (mGENRE) in combination with Wikipedia API Search (WAPIS) to label our data and compare it to an approach using WAPIS only. We find that our combined method reaches 53.9% coverage on our corpus, compared to 30.9% using only WAPIS. We analyze our results and explain the value of using a multilingual system when working with Icelandic. Additionally, we analyze the data that remain unlabeled, identify patterns and discuss why they may be more difficult to annotate.


pdf bib
Disambiguating Confusion Sets as an Aid for Dyslexic Spelling
Steinunn Rut Friðriksdóttir | Anton Karl Ingason
Proceedings of the 1st Workshop on Tools and Resources to Empower People with REAding DIfficulties (READI)

Spell checkers and other proofreading software are crucial tools for people with dyslexia and other reading disabilities. Most spell checkers automatically detect spelling mistakes by looking up individual words and seeing if they exist in the vocabulary. However, one of the biggest challenges of automatic spelling correction is how to deal with real-word errors, i.e. spelling mistakes which lead to a real but unintended word, such as when then is written in place of than. These errors account for 20% of all spelling mistakes made by people with dyslexia. As both words exist in the vocabulary, a simple dictionary lookup will not detect the mistake. The only way to disambiguate which word was actually intended is to look at the context in which the word appears. This problem is particularly apparent in languages with rich morphology where there is often minimal orthographic difference between grammatical items. In this paper, we present our novel confusion set corpus for Icelandic and discuss how it could be used for context-sensitive spelling correction. We have collected word pairs from seven different categories, chosen for their homophonous properties, along with sentence examples and frequency information from said pairs. We present a small-scale machine learning experiment using a decision tree binary classification which results range from 73% to 86% average accuracy with 10-fold cross validation. While not intended as a finalized result, the method shows potential and will be improved in future research.