Stella Biderman


2024

pdf bib
Re-Evaluating Evaluation for Multilingual Summarization
Jessica Zosa Forde | Ruochen Zhang | Lintang Sutawika | Alham Fikri Aji | Samuel Cahyawijaya | Genta Indra Winata | Minghao Wu | Carsten Eickhoff | Stella Biderman | Ellie Pavlick
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Automatic evaluation approaches (ROUGE, BERTScore, LLM-based evaluators) have been widely used to evaluate summarization tasks. Despite the complexities of script differences and tokenization, these approaches have been indiscriminately applied to summarization across multiple languages. While previous works have argued that these approaches correlate strongly with human ratings in English, it remains unclear whether the conclusion holds for other languages. To answer this question, we construct a small-scale pilot dataset containing article-summary pairs and human ratings in English, Chinese and Indonesian. To measure the strength of summaries, our ratings are measured as head-to-head comparisons with resulting Elo scores across four dimensions. Our analysis reveals that standard metrics are unreliable measures of quality, and that these problems are exacerbated in Chinese and Indonesian. We advocate for more nuanced and careful considerations in designing a robust evaluation framework for multiple languages.

pdf bib
Documenting Geographically and Contextually Diverse Language Data Sources
Angelina McMillan-Major | Francesco De Toni | Zaid Alyafeai | Stella Biderman | Kimbo Chen | Gérard Dupont | Hady Elsahar | Chris Emezue | Alham Fikri Aji | Suzana Ilić | Nurulaqilla Khamis | Colin Leong | Maraim Masoud | Aitor Soroa | Pedro Ortiz Suarez | Daniel van Strien | Zeerak Talat | Yacine Jernite
Northern European Journal of Language Technology, Volume 10

Contemporary large-scale data collection efforts have prioritized the amount of data collected to improve large language models (LLM). This quantitative approach has resulted in concerns for the rights of data subjects represented in data collections. This concern is exacerbated by a lack of documentation and analysis tools, making it difficult to interrogate these collections. Mindful of these pitfalls, we present a methodology for documentation-first, human-centered data collection. We apply this approach in an effort to train a multilingual LLM. We identify a geographically diverse set of target language groups (Arabic varieties, Basque, Chinese varieties, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. We structure this effort by developing an online catalogue in English as a tool for gathering metadata through public hackathons. We present our tool and analyses of the resulting resource metadata, including distributions over languages, regions, and resource types, and discuss our lessons learned.

2023

pdf bib
BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting
Zheng Xin Yong | Hailey Schoelkopf | Niklas Muennighoff | Alham Fikri Aji | David Ifeoluwa Adelani | Khalid Almubarak | M Saiful Bari | Lintang Sutawika | Jungo Kasai | Ahmed Baruwa | Genta Winata | Stella Biderman | Edward Raff | Dragomir Radev | Vassilina Nikoulina
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The BLOOM model is a large publicly available multilingual language model, but its pretraining was limited to 46 languages. To extend the benefits of BLOOM to other languages without incurring prohibitively large costs, it is desirable to adapt BLOOM to new languages not seen during pretraining. In this work, we apply existing language adaptation strategies to BLOOM and benchmark its zero-shot prompting performance on eight new languages in a resource-constrained setting. We find language adaptation to be effective at improving zero-shot performance in new languages. Surprisingly, we find that adapter-based finetuning is more effective than continued pretraining for large models. In addition, we discover that prompting performance is not significantly affected by language specifics, such as the writing system. It is primarily determined by the size of the language adaptation data. We also add new languages to BLOOMZ, which is a multitask finetuned version of BLOOM capable of following task instructions zero-shot. We find including a new language in the multitask fine-tuning mixture to be the most effective method to teach BLOOMZ a new language. We conclude that with sufficient training data language adaptation can generalize well to diverse languages. Our code is available at https://github.com/bigscience-workshop/multilingual-modeling.

pdf bib
Crosslingual Generalization through Multitask Finetuning
Niklas Muennighoff | Thomas Wang | Lintang Sutawika | Adam Roberts | Stella Biderman | Teven Le Scao | M Saiful Bari | Sheng Shen | Zheng Xin Yong | Hailey Schoelkopf | Xiangru Tang | Dragomir Radev | Alham Fikri Aji | Khalid Almubarak | Samuel Albanie | Zaid Alyafeai | Albert Webson | Edward Raff | Colin Raffel
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multitask prompted finetuning (MTF) has been shown to help large language models generalize to new tasks in a zero-shot setting, but so far explorations of MTF have focused on English data and models. We apply MTF to the pretrained multilingual BLOOM and mT5 model families to produce finetuned variants called BLOOMZ and mT0. We find finetuning large multilingual language models on English tasks with English prompts allows for task genrealization to non-English languages that appear only in the pretraining corpus. Finetuning on multilingual tasks with English prompts further improves performance on English and non-English tasks leading to various state-of-the-art zero-shot results. We also investigate finetuning on multilingual tasks with prompts that have been machine-translated from English to match the language of each dataset. We find training on these machine-translated prompts leads to better performance on human-written prompts in the respective languages. Surprisingly, we find models are capable of zero-shot generalization to tasks in languages they have never intentionally seen. We conjecture that the models are learning higher-level capabilities that are both task- and language-agnostic. In addition, we introduce xP3, a composite of supervised datasets in 46 languages with English and machine-translated prompts. Our code, datasets and models are freely available at https://github.com/bigscience-workshop/xmtf.

pdf bib
GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration
Aleksandra Piktus | Odunayo Ogundepo | Christopher Akiki | Akintunde Oladipo | Xinyu Zhang | Hailey Schoelkopf | Stella Biderman | Martin Potthast | Jimmy Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub: https://github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces: https://huggingface.co/spaces/spacerini/gaia.

pdf bib
trlX: A Framework for Large Scale Reinforcement Learning from Human Feedback
Alexander Havrilla | Maksym Zhuravinskyi | Duy Phung | Aman Tiwari | Jonathan Tow | Stella Biderman | Quentin Anthony | Louis Castricato
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Reinforcement learning from human feedback (RLHF) utilizes human feedback to better align large language models with human preferences via online optimization against a learned reward model. Current RLHF paradigms rely on Proximal Policy Optimization (PPO), which quickly becomes a challenge to implement and scale up to large architectures. To address this difficulty we present the AutoRLHF library as a feature complete open-source framework for RLHF fine-tuning of models up to and exceeding 70 billion parameters. To do so we implement support for multiple types of distributed training including distributed data parallel, model sharded, as well as tensor, sequential, and pipeline parallelism. Additionally, we implement compute and memory saving features, giving AutoRLHF the flexibility to support users with a wide range of compute resources. This includes offline RL methods like Implicit Language Q Learning (ILQL) as a compute efficient alternative to PPO. We find offline fine-tuning offers competitive performance relative to online algorithms while being easier to implement, train, and scale. To evaluate our framework we train RLHF models on two separate well-known tasks using publicly available human preference data. Models trained with AutoRLHF achieve preference win-rates over baselines at rates comparable to the original works.

pdf bib
RWKV: Reinventing RNNs for the Transformer Era
Bo Peng | Eric Alcaide | Quentin Anthony | Alon Albalak | Samuel Arcadinho | Stella Biderman | Huanqi Cao | Xin Cheng | Michael Chung | Leon Derczynski | Xingjian Du | Matteo Grella | Kranthi Gv | Xuzheng He | Haowen Hou | Przemyslaw Kazienko | Jan Kocon | Jiaming Kong | Bartłomiej Koptyra | Hayden Lau | Jiaju Lin | Krishna Sri Ipsit Mantri | Ferdinand Mom | Atsushi Saito | Guangyu Song | Xiangru Tang | Johan Wind | Stanisław Woźniak | Zhenyuan Zhang | Qinghua Zhou | Jian Zhu | Rui-Jie Zhu
Findings of the Association for Computational Linguistics: EMNLP 2023

Transformers have revolutionized almost all natural language processing (NLP) tasks but suffer from memory and computational complexity that scales quadratically with sequence length. In contrast, recurrent neural networks (RNNs) exhibit linear scaling in memory and computational requirements but struggle to match the same performance as Transformers due to limitations in parallelization and scalability. We propose a novel model architecture, Receptance Weighted Key Value (RWKV), that combines the efficient parallelizable training of transformers with the efficient inference of RNNs. Our approach leverages a linear attention mechanism and allows us to formulate the model as either a Transformer or an RNN, thus parallelizing computations during training and maintains constant computational and memory complexity during inference. We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers, suggesting future work can leverage this architecture to create more efficient models. This work presents a significant step towards reconciling trade-offs between computational efficiency and model performance in sequence processing tasks.

2022

pdf bib
You reap what you sow: On the Challenges of Bias Evaluation Under Multilingual Settings
Zeerak Talat | Aurélie Névéol | Stella Biderman | Miruna Clinciu | Manan Dey | Shayne Longpre | Sasha Luccioni | Maraim Masoud | Margaret Mitchell | Dragomir Radev | Shanya Sharma | Arjun Subramonian | Jaesung Tae | Samson Tan | Deepak Tunuguntla | Oskar Van Der Wal
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

Evaluating bias, fairness, and social impact in monolingual language models is a difficult task. This challenge is further compounded when language modeling occurs in a multilingual context. Considering the implication of evaluation biases for large multilingual language models, we situate the discussion of bias evaluation within a wider context of social scientific research with computational work. We highlight three dimensions of developing multilingual bias evaluation frameworks: (1) increasing transparency through documentation, (2) expanding targets of bias beyond gender, and (3) addressing cultural differences that exist between languages. We further discuss the power dynamics and consequences of training large language models and recommend that researchers remain cognizant of the ramifications of developing such technologies.

pdf bib
GPT-NeoX-20B: An Open-Source Autoregressive Language Model
Sidney Black | Stella Biderman | Eric Hallahan | Quentin Anthony | Leo Gao | Laurence Golding | Horace He | Connor Leahy | Kyle McDonell | Jason Phang | Michael Pieler | Usvsn Sai Prashanth | Shivanshu Purohit | Laria Reynolds | Jonathan Tow | Ben Wang | Samuel Weinbach
Proceedings of BigScience Episode #5 -- Workshop on Challenges & Perspectives in Creating Large Language Models

We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we describe GPT-NeoX-20B’s architecture and training, and evaluate its performance. We open-source the training and evaluation code, as well as the model weights, at https://github.com/EleutherAI/gpt-neox.

pdf bib
What Language Model to Train if You Have One Million GPU Hours?
Teven Le Scao | Thomas Wang | Daniel Hesslow | Stas Bekman | M Saiful Bari | Stella Biderman | Hady Elsahar | Niklas Muennighoff | Jason Phang | Ofir Press | Colin Raffel | Victor Sanh | Sheng Shen | Lintang Sutawika | Jaesung Tae | Zheng Xin Yong | Julien Launay | Iz Beltagy
Findings of the Association for Computational Linguistics: EMNLP 2022

The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone.In the process of building BLOOM–the Big Science Large Open-science Open-access Multilingual language model–our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget.Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization.In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience.

pdf bib
Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Julia Kreutzer | Isaac Caswell | Lisa Wang | Ahsan Wahab | Daan van Esch | Nasanbayar Ulzii-Orshikh | Allahsera Tapo | Nishant Subramani | Artem Sokolov | Claytone Sikasote | Monang Setyawan | Supheakmungkol Sarin | Sokhar Samb | Benoît Sagot | Clara Rivera | Annette Rios | Isabel Papadimitriou | Salomey Osei | Pedro Ortiz Suarez | Iroro Orife | Kelechi Ogueji | Andre Niyongabo Rubungo | Toan Q. Nguyen | Mathias Müller | André Müller | Shamsuddeen Hassan Muhammad | Nanda Muhammad | Ayanda Mnyakeni | Jamshidbek Mirzakhalov | Tapiwanashe Matangira | Colin Leong | Nze Lawson | Sneha Kudugunta | Yacine Jernite | Mathias Jenny | Orhan Firat | Bonaventure F. P. Dossou | Sakhile Dlamini | Nisansa de Silva | Sakine Çabuk Ballı | Stella Biderman | Alessia Battisti | Ahmed Baruwa | Ankur Bapna | Pallavi Baljekar | Israel Abebe Azime | Ayodele Awokoya | Duygu Ataman | Orevaoghene Ahia | Oghenefego Ahia | Sweta Agrawal | Mofetoluwa Adeyemi
Transactions of the Association for Computational Linguistics, Volume 10

With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, Web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.

2021

pdf bib
Towards a Model-Theoretic View of Narratives
Louis Castricato | Stella Biderman | David Thue | Rogelio Cardona-Rivera
Proceedings of the Third Workshop on Narrative Understanding

In this paper, we propose the beginnings of a formal framework for modeling narrative qua narrative. Our framework affords the ability to discuss key qualities of stories and their communication, including the flow of information from a Narrator to a Reader, the evolution of a Reader’s story model over time, and Reader uncertainty. We demonstrate its applicability to computational narratology by giving explicit algorithms for measuring the accuracy with which information was conveyed to the Reader, along with two novel measurements of story coherence.
Search
Co-authors
Fix data