Stephan Peitz


2023

pdf bib
Learning Language-Specific Layers for Multilingual Machine Translation
Telmo Pires | Robin Schmidt | Yi-Hsiu Liao | Stephan Peitz
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g., avoiding losing gender and formality information when translating through English).On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase model capacity, while keeping the amount of computation and the number of parameters used in the forward pass constant. The key idea is to have some layers of the encoder be source or target language-specific, while keeping the remaining layers shared. We study the best way to place these layers using a neural architecture search inspired approach, and achieve an improvement of 1.3 chrF (1.5 spBLEU) points over not using LSLs on a separate decoder architecture, and 1.9 chrF (2.2 spBLEU) on a shared decoder one.

pdf bib
State Spaces Aren’t Enough: Machine Translation Needs Attention
Ali Vardasbi | Telmo Pessoa Pires | Robin Schmidt | Stephan Peitz
Proceedings of the 24th Annual Conference of the European Association for Machine Translation

Structured State Spaces for Sequences (S4) is a recently proposed sequence model with successful applications in various tasks, e.g. vision, language modelling, and audio. Thanks to its mathematical formulation, it compresses its input to a single hidden state, and is able to capture long range dependencies while avoiding the need for an attention mechanism. In this work, we apply S4 to Machine Translation (MT), and evaluate several encoder-decoder variants on WMT’14 and WMT’16. In contrast with the success in language modeling, we find that S4 lags behind the Transformer by approximately 4 BLEU points, and that it counter-intuitively struggles with long sentences. Finally, we show that this gap is caused by S4’s inability to summarize the full source sentence in a single hidden state, and show that we can close the gap by introducing an attention mechanism.

2022

pdf bib
Non-Autoregressive Neural Machine Translation: A Call for Clarity
Robin Schmidt | Telmo Pires | Stephan Peitz | Jonas Lööf
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Non-autoregressive approaches aim to improve the inference speed of translation models by only requiring a single forward pass to generate the output sequence instead of iteratively producing each predicted token. Consequently, their translation quality still tends to be inferior to their autoregressive counterparts due to several issues involving output token interdependence. In this work, we take a step back and revisit several techniques that have been proposed for improving non-autoregressive translation models and compare their combined translation quality and speed implications under third-party testing environments. We provide novel insights for establishing strong baselines using length prediction or CTC-based architecture variants and contribute standardized BLEU, chrF++, and TER scores using sacreBLEU on four translation tasks, which crucially have been missing as inconsistencies in the use of tokenized BLEU lead to deviations of up to 1.7 BLEU points. Our open-sourced code is integrated into fairseq for reproducibility.

2019

pdf bib
Jointly Learning to Align and Translate with Transformer Models
Sarthak Garg | Stephan Peitz | Udhyakumar Nallasamy | Matthias Paulik
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The state of the art in machine translation (MT) is governed by neural approaches, which typically provide superior translation accuracy over statistical approaches. However, on the closely related task of word alignment, traditional statistical word alignment models often remain the go-to solution. In this paper, we present an approach to train a Transformer model to produce both accurate translations and alignments. We extract discrete alignments from the attention probabilities learnt during regular neural machine translation model training and leverage them in a multi-task framework to optimize towards translation and alignment objectives. We demonstrate that our approach produces competitive results compared to GIZA++ trained IBM alignment models without sacrificing translation accuracy and outperforms previous attempts on Transformer model based word alignment. Finally, by incorporating IBM model alignments into our multi-task training, we report significantly better alignment accuracies compared to GIZA++ on three publicly available data sets.

2015

pdf bib
A Comparison of Update Strategies for Large-Scale Maximum Expected BLEU Training
Joern Wuebker | Sebastian Muehr | Patrick Lehnen | Stephan Peitz | Hermann Ney
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Local System Voting Feature for Machine Translation System Combination
Markus Freitag | Jan-Thorsten Peter | Stephan Peitz | Minwei Feng | Hermann Ney
Proceedings of the Tenth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen machine translation system for IWSLT 2015
Jan-Thorsten Peter | Farzad Toutounchi | Stephan Peitz | Parnia Bahar | Andreas Guta | Hermann Ney
Proceedings of the 12th International Workshop on Spoken Language Translation: Evaluation Campaign

2014

pdf bib
Combined spoken language translation
Markus Freitag | Joern Wuebker | Stephan Peitz | Hermann Ney | Matthias Huck | Alexandra Birch | Nadir Durrani | Philipp Koehn | Mohammed Mediani | Isabel Slawik | Jan Niehues | Eunach Cho | Alex Waibel | Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign

EU-BRIDGE is a European research project which is aimed at developing innovative speech translation technology. One of the collaborative efforts within EU-BRIDGE is to produce joint submissions of up to four different partners to the evaluation campaign at the 2014 International Workshop on Spoken Language Translation (IWSLT). We submitted combined translations to the German→English spoken language translation (SLT) track as well as to the German→English, English→German and English→French machine translation (MT) tracks. In this paper, we present the techniques which were applied by the different individual translation systems of RWTH Aachen University, the University of Edinburgh, Karlsruhe Institute of Technology, and Fondazione Bruno Kessler. We then show the combination approach developed at RWTH Aachen University which combined the individual systems. The consensus translations yield empirical gains of up to 2.3 points in BLEU and 1.2 points in TER compared to the best individual system.

pdf bib
The RWTH Aachen machine translation systems for IWSLT 2014
Joern Wuebker | Stephan Peitz | Andreas Guta | Hermann Ney
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign

This work describes the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign International Workshop on Spoken Language Translation (IWSLT) 2014. We participated in both the MT and SLT tracks for the English→French and German→English language pairs and applied the identical training pipeline and models on both language pairs. Our state-of-the-art phrase-based baseline systems are augmented with maximum expected BLEU training for phrasal, lexical and reordering models. Further, we apply rescoring with novel recurrent neural language and translation models. The same systems are used for the SLT track, where we additionally perform punctuation prediction on the automatic transcriptions employing hierarchical phrase-based translation. We are able to improve RWTH’s 2013 evaluation systems by 1.7-1.8% BLEU absolute.

pdf bib
Better punctuation prediction with hierarchical phrase-based translation
Stephan Peitz | Markus Freitag | Hermann Ney
Proceedings of the 11th International Workshop on Spoken Language Translation: Papers

Punctuation prediction is an important task in spoken language translation and can be performed by using a monolingual phrase-based translation system to translate from unpunctuated to text with punctuation. However, a punctuation prediction system based on phrase-based translation is not able to capture long-range dependencies between words and punctuation marks. In this paper, we propose to employ hierarchical translation in place of phrase-based translation and show that this approach is more robust for unseen word sequences. Furthermore, we analyze different optimization criteria for tuning the scaling factors of a monolingual statistical machine translation system. In our experiments, we compare the new approach with other punctuation prediction methods and show improvements in terms of F1-Score and BLEU on the IWSLT 2014 German→English and English→French translation tasks.

pdf bib
German Compounds and Statistical Machine Translation. Can they get along?
Carla Parra Escartín | Stephan Peitz | Hermann Ney
Proceedings of the 10th Workshop on Multiword Expressions (MWE)

pdf bib
EU-BRIDGE MT: Combined Machine Translation
Markus Freitag | Stephan Peitz | Joern Wuebker | Hermann Ney | Matthias Huck | Rico Sennrich | Nadir Durrani | Maria Nadejde | Philip Williams | Philipp Koehn | Teresa Herrmann | Eunah Cho | Alex Waibel
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen German-English Machine Translation System for WMT 2014
Stephan Peitz | Joern Wuebker | Markus Freitag | Hermann Ney
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
Simple and Effective Approach for Consistent Training of Hierarchical Phrase-based Translation Models
Stephan Peitz | David Vilar | Hermann Ney
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, volume 2: Short Papers

2013

pdf bib
Improving Statistical Machine Translation with Word Class Models
Joern Wuebker | Stephan Peitz | Felix Rietig | Hermann Ney
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Joint WMT 2013 Submission of the QUAERO Project
Stephan Peitz | Saab Mansour | Matthias Huck | Markus Freitag | Hermann Ney | Eunah Cho | Teresa Herrmann | Mohammed Mediani | Jan Niehues | Alex Waibel | Alexander Allauzen | Quoc Khanh Do | Bianka Buschbeck | Tonio Wandmacher
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen Machine Translation System for WMT 2013
Stephan Peitz | Saab Mansour | Jan-Thorsten Peter | Christoph Schmidt | Joern Wuebker | Matthias Huck | Markus Freitag | Hermann Ney
Proceedings of the Eighth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen machine translation systems for IWSLT 2013
Joern Wuebker | Stephan Peitz | Tamer Alkhouli | Jan-Thorsten Peter | Minwei Feng | Markus Freitag | Hermann Ney
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

This work describes the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign International Workshop on Spoken Language Translation (IWSLT) 2013. We participated in the English→French, English↔German, Arabic→English, Chinese→English and Slovenian↔English MT tracks and the English→French and English→German SLT tracks. We apply phrase-based and hierarchical SMT decoders, which are augmented by state-of-the-art extensions. The novel techniques we experimentally evaluate include discriminative phrase training, a continuous space language model, a hierarchical reordering model, a word class language model, domain adaptation via data selection and system combination of standard and reverse order models. By application of these methods we can show considerable improvements over the respective baseline systems.

pdf bib
The RWTH Aachen German and English LVCSR systems for IWSLT-2013
M. Ali Basha Shaik | Zoltan Tüske | Simon Wiesler | Markus Nußbaum-Thom | Stephan Peitz | Ralf Schlüter | Hermann Ney
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper, German and English large vocabulary continuous speech recognition (LVCSR) systems developed by the RWTH Aachen University for the IWSLT-2013 evaluation campaign are presented. Good improvements are obtained with state-of-the-art monolingual and multilingual bottleneck features. In addition, an open vocabulary approach using morphemic sub-lexical units is investigated along with the language model adaptation for the German LVCSR. For both the languages, competitive WERs are achieved using system combination.

pdf bib
EU-BRIDGE MT: text translation of talks in the EU-BRIDGE project
Markus Freitag | Stephan Peitz | Joern Wuebker | Hermann Ney | Nadir Durrani | Matthias Huck | Philipp Koehn | Thanh-Le Ha | Jan Niehues | Mohammed Mediani | Teresa Herrmann | Alex Waibel | Nicola Bertoldi | Mauro Cettolo | Marcello Federico
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

EU-BRIDGE1 is a European research project which is aimed at developing innovative speech translation technology. This paper describes one of the collaborative efforts within EUBRIDGE to further advance the state of the art in machine translation between two European language pairs, English→French and German→English. Four research institutions involved in the EU-BRIDGE project combined their individual machine translation systems and participated with a joint setup in the machine translation track of the evaluation campaign at the 2013 International Workshop on Spoken Language Translation (IWSLT). We present the methods and techniques to achieve high translation quality for text translation of talks which are applied at RWTH Aachen University, the University of Edinburgh, Karlsruhe Institute of Technology, and Fondazione Bruno Kessler. We then show how we have been able to considerably boost translation performance (as measured in terms of the metrics BLEU and TER) by means of system combination. The joint setups yield empirical gains of up to 1.4 points in BLEU and 2.8 points in TER on the IWSLT test sets compared to the best single systems.

pdf bib
(Hidden) Conditional Random Fields Using Intermediate Classes for Statistical Machine Translation
Patrick Lehnen | Jorn Wiibker Jan-Thorsten Peter | Stephan Peitz | Hermann Ney
Proceedings of Machine Translation Summit XIV: Papers

pdf bib
Reverse Word Order Model
Markus Freitag | Minwei Feng | Matthias Huck | Stephan Peitz | Hermann Ney
Proceedings of Machine Translation Summit XIV: Papers

2012

pdf bib
The RWTH Aachen speech recognition and machine translation system for IWSLT 2012
Stephan Peitz | Saab Mansour | Markus Freitag | Minwei Feng | Matthias Huck | Joern Wuebker | Malte Nuhn | Markus Nußbaum-Thom | Hermann Ney
Proceedings of the 9th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper, the automatic speech recognition (ASR) and statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2012 are presented. We participated in the ASR (English), MT (English-French, Arabic-English, Chinese-English, German-English) and SLT (English-French) tracks. For the MT track both hierarchical and phrase-based SMT decoders are applied. A number of different techniques are evaluated in the MT and SLT tracks, including domain adaptation via data selection, translation model interpolation, phrase training for hierarchical and phrase-based systems, additional reordering model, word class language model, various Arabic and Chinese segmentation methods, postprocessing of speech recognition output with an SMT system, and system combination. By application of these methods we can show considerable improvements over the respective baseline systems.

pdf bib
Spoken language translation using automatically transcribed text in training
Stephan Peitz | Simon Wiesler | Markus Nußbaum-Thom | Hermann Ney
Proceedings of the 9th International Workshop on Spoken Language Translation: Papers

In spoken language translation a machine translation system takes speech as input and translates it into another language. A standard machine translation system is trained on written language data and expects written language as input. In this paper we propose an approach to close the gap between the output of automatic speech recognition and the input of machine translation by training the translation system on automatically transcribed speech. In our experiments we show improvements of up to 0.9 BLEU points on the IWSLT 2012 English-to-French speech translation task.

pdf bib
The RWTH Aachen Machine Translation System for WMT 2012
Matthias Huck | Stephan Peitz | Markus Freitag | Malte Nuhn | Hermann Ney
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Joint WMT 2012 Submission of the QUAERO Project
Markus Freitag | Stephan Peitz | Matthias Huck | Hermann Ney | Jan Niehues | Teresa Herrmann | Alex Waibel | Hai-son Le | Thomas Lavergne | Alexandre Allauzen | Bianka Buschbeck | Josep Maria Crego | Jean Senellart
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Forced Derivations for Hierarchical Machine Translation
Stephan Peitz | Arne Mauser | Joern Wuebker | Hermann Ney
Proceedings of COLING 2012: Posters

pdf bib
Jane 2: Open Source Phrase-based and Hierarchical Statistical Machine Translation
Joern Wuebker | Matthias Huck | Stephan Peitz | Malte Nuhn | Markus Freitag | Jan-Thorsten Peter | Saab Mansour | Hermann Ney
Proceedings of COLING 2012: Demonstration Papers

pdf bib
Discriminative Reordering Extensions for Hierarchical Phrase-Based Machine Translation
Matthias Huck | Stephan Peitz | Markus Freitag | Hermann Ney
Proceedings of the 16th Annual Conference of the European Association for Machine Translation

2011

pdf bib
The RWTH Aachen machine translation system for IWSLT 2011
Joern Wuebker | Matthias Huck | Saab Mansour | Markus Freitag | Minwei Feng | Stephan Peitz | Christoph Schmidt | Hermann Ney
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper the statistical machine translation (SMT) systems of RWTH Aachen University developed for the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2011 is presented. We participated in the MT (English-French, Arabic-English, ChineseEnglish) and SLT (English-French) tracks. Both hierarchical and phrase-based SMT decoders are applied. A number of different techniques are evaluated, including domain adaptation via monolingual and bilingual data selection, phrase training, different lexical smoothing methods, additional reordering models for the hierarchical system, various Arabic and Chinese segmentation methods, punctuation prediction for speech recognition output, and system combination. By application of these methods we can show considerable improvements over the respective baseline systems.

pdf bib
Advances on spoken language translation in the Quaero program
Karim Boudahmane | Bianka Buschbeck | Eunah Cho | Josep Maria Crego | Markus Freitag | Thomas Lavergne | Hermann Ney | Jan Niehues | Stephan Peitz | Jean Senellart | Artem Sokolov | Alex Waibel | Tonio Wandmacher | Joern Wuebker | François Yvon
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

The Quaero program is an international project promoting research and industrial innovation on technologies for automatic analysis and classification of multimedia and multilingual documents. Within the program framework, research organizations and industrial partners collaborate to develop prototypes of innovating applications and services for access and usage of multimedia data. One of the topics addressed is the translation of spoken language. Each year, a project-internal evaluation is conducted by DGA to monitor the technological advances. This work describes the design and results of the 2011 evaluation campaign. The participating partners were RWTH, KIT, LIMSI and SYSTRAN. Their approaches are compared on both ASR output and reference transcripts of speech data for the translation between French and German. The results show that the developed techniques further the state of the art and improve translation quality.

pdf bib
Modeling punctuation prediction as machine translation
Stephan Peitz | Markus Freitag | Arne Mauser | Hermann Ney
Proceedings of the 8th International Workshop on Spoken Language Translation: Papers

Punctuation prediction is an important task in Spoken Language Translation. The output of speech recognition systems does not typically contain punctuation marks. In this paper we analyze different methods for punctuation prediction and show improvements in the quality of the final translation output. In our experiments we compare the different approaches and show improvements of up to 0.8 BLEU points on the IWSLT 2011 English French Speech Translation of Talks task using a translation system to translate from unpunctuated to punctuated text instead of a language model based punctuation prediction method. Furthermore, we do a system combination of the hypotheses of all our different approaches and get an additional improvement of 0.4 points in BLEU.

pdf bib
Joint WMT Submission of the QUAERO Project
Markus Freitag | Gregor Leusch | Joern Wuebker | Stephan Peitz | Hermann Ney | Teresa Herrmann | Jan Niehues | Alex Waibel | Alexandre Allauzen | Gilles Adda | Josep Maria Crego | Bianka Buschbeck | Tonio Wandmacher | Jean Senellart
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
The RWTH Aachen Machine Translation System for WMT 2011
Matthias Huck | Joern Wuebker | Christoph Schmidt | Markus Freitag | Stephan Peitz | Daniel Stein | Arnaud Dagnelies | Saab Mansour | Gregor Leusch | Hermann Ney
Proceedings of the Sixth Workshop on Statistical Machine Translation

2010

pdf bib
A Cocktail of Deep Syntactic Features for Hierarchical Machine Translation
Daniel Stein | Stephan Peitz | David Vilar | Hermann Ney
Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers

In this work we review and compare three additional syntactic enhancements for the hierarchical phrase-based translation model, which have been presented in the last few years. We compare their performance when applied separately and study whether the combination may yield additional improvements. Our findings show that the models are complementary, and their combination achieve an increase of 1% in BLEU and a reduction of nearly 2% in TER. The models presented in this work are made available as part of the Jane open source machine translation toolkit.

pdf bib
The RWTH Aachen machine translation system for IWSLT 2010
Saab Mansour | Stephan Peitz | David Vilar | Joern Wuebker | Hermann Ney
Proceedings of the 7th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper we describe the statistical machine translation system of the RWTH Aachen University developed for the translation task of the IWSLT 2010. This year, we participated in the BTEC translation task for the Arabic to English language direction. We experimented with two state-of-theart decoders: phrase-based and hierarchical-based decoders. Extensions to the decoders included phrase training (as opposed to heuristic phrase extraction) for the phrase-based decoder, and soft syntactic features for the hierarchical decoder. Additionally, we experimented with various rule-based and statistical-based segmenters for Arabic. Due to the different decoders and the different methodologies that we apply for segmentation, we expect that there will be complimentary variation in the results achieved by each system. The next step would be to exploit these variations and achieve better results by combining the systems. We try different strategies for system combination and report significant improvements over the best single system.

pdf bib
If I only had a parser: poor man’s syntax for hierarchical machine translation
David Vilar | Daniel Stein | Stephan Peitz | Hermann Ney
Proceedings of the 7th International Workshop on Spoken Language Translation: Papers