Stephen Meisenbacher


pdf bib
TUM sebis at GermEval 2022: A Hybrid Model Leveraging Gaussian Processes and Fine-Tuned XLM-RoBERTa for German Text Complexity Analysis
Juraj Vladika | Stephen Meisenbacher | Florian Matthes
Proceedings of the GermEval 2022 Workshop on Text Complexity Assessment of German Text

The task of quantifying the complexity of written language presents an interesting endeavor, particularly in the opportunity that it presents for aiding language learners. In this pursuit, the question of what exactly about natural language contributes to its complexity (or lack thereof) is an interesting point of investigation. We propose a hybrid approach, utilizing shallow models to capture linguistic features, while leveraging a fine-tuned embedding model to encode the semantics of input text. By harmonizing these two methods, we achieve competitive scores in the given metric, and we demonstrate improvements over either singular method. In addition, we uncover the effectiveness of Gaussian processes in the training of shallow models for text complexity analysis.

pdf bib
Differential Privacy in Natural Language Processing The Story So Far
Oleksandra Klymenko | Stephen Meisenbacher | Florian Matthes
Proceedings of the Fourth Workshop on Privacy in Natural Language Processing

As the tide of Big Data continues to influence the landscape of Natural Language Processing (NLP), the utilization of modern NLP methods has grounded itself in this data, in order to tackle a variety of text-based tasks. These methods without a doubt can include private or otherwise personally identifiable information. As such, the question of privacy in NLP has gained fervor in recent years, coinciding with the development of new Privacy- Enhancing Technologies (PETs). Among these PETs, Differential Privacy boasts several desirable qualities in the conversation surrounding data privacy. Naturally, the question becomes whether Differential Privacy is applicable in the largely unstructured realm of NLP. This topic has sparked novel research, which is unified in one basic goal how can one adapt Differential Privacy to NLP methods? This paper aims to summarize the vulnerabilities addressed by Differential Privacy, the current thinking, and above all, the crucial next steps that must be considered.