Stephen Obadinma


2023

pdf bib
Effectiveness of Data Augmentation for Parameter Efficient Tuning with Limited Data
Stephen Obadinma | Hongyu Guo | Xiaodan Zhu
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

Recent work has demonstrated that using parameter efficient tuning techniques such as prefix tuning (or P-tuning) on pretrained language models can yield performance that is comparable or superior to fine-tuning while dramatically reducing trainable parameters. Nevertheless, the effectiveness of such methods under the context of data augmentation, a common strategy to improve learning under low data regimes, has not been fully explored. In this paper, we examine the effectiveness of several popular task-agnostic data augmentation techniques, i.e., EDA, Back Translation, and Mixup, when using two general parameter efficient tuning methods, P-tuning v2 and LoRA, under data scarcity. We show that data augmentation can be used to boost the performance of P-tuning and LoRA models, but the effectiveness of each technique varies and certain methods can lead to a notable degradation in performance, particularly when using larger models and on harder tasks. We further analyze the sentence representations of P-tuning compared to fine-tuning to help understand the above behaviour, and reveal how P-tuning generally presents a more limited ability to separate the sentence embeddings from different classes of augmented data. In addition, it displays poorer performance on heavily altered data. However, we demonstrate that by adding a simple contrastive loss function it can help mitigate such issues for prefix tuning, resulting in sizable improvements to augmented data performance.

2022

pdf bib
Bringing the State-of-the-Art to Customers: A Neural Agent Assistant Framework for Customer Service Support
Stephen Obadinma | Faiza Khan Khattak | Shirley Wang | Tania Sidhorn | Elaine Lau | Sean Robertson | Jingcheng Niu | Winnie Au | Alif Munim | Karthik Raja Kalaiselvi Bhaskar
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Building Agent Assistants that can help improve customer service support requires inputs from industry users and their customers, as well as knowledge about state-of-the-art Natural Language Processing (NLP) technology. We combine expertise from academia and industry to bridge the gap and build task/domain-specific Neural Agent Assistants (NAA) with three high-level components for: (1) Intent Identification, (2) Context Retrieval, and (3) Response Generation. In this paper, we outline the pipeline of the NAA’s core system and also present three case studies in which three industry partners successfully adapt the framework to find solutions to their unique challenges. Our findings suggest that a collaborative process is instrumental in spurring the development of emerging NLP models for Conversational AI tasks in industry. The full reference implementation code and results are available at https://github.com/VectorInstitute/NAA.

2020

pdf bib
SemEval-2020 Task 5: Counterfactual Recognition
Xiaoyu Yang | Stephen Obadinma | Huasha Zhao | Qiong Zhang | Stan Matwin | Xiaodan Zhu
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We present a counterfactual recognition (CR) task, the shared Task 5 of SemEval-2020. Counterfactuals describe potential outcomes (consequents) produced by actions or circumstances that did not happen or cannot happen and are counter to the facts (antecedent). Counterfactual thinking is an important characteristic of the human cognitive system; it connects antecedents and consequent with causal relations. Our task provides a benchmark for counterfactual recognition in natural language with two subtasks. Subtask-1 aims to determine whether a given sentence is a counterfactual statement or not. Subtask-2 requires the participating systems to extract the antecedent and consequent in a given counterfactual statement. During the SemEval-2020 official evaluation period, we received 27 submissions to Subtask-1 and 11 to Subtask-2. Our data and baseline code are made publicly available at https://zenodo.org/record/3932442. The task website and leaderboard can be found at https://competitions.codalab.org/competitions/21691.