Sudha Rao


2022

pdf bib
Craft an Iron Sword: Dynamically Generating Interactive Game Characters by Prompting Large Language Models Tuned on Code
Ryan Volum | Sudha Rao | Michael Xu | Gabriel DesGarennes | Chris Brockett | Benjamin Van Durme | Olivia Deng | Akanksha Malhotra | Bill Dolan
Proceedings of the 3rd Wordplay: When Language Meets Games Workshop (Wordplay 2022)

Non-Player Characters (NPCs) significantly enhance the player experience in many games. Historically, players’ interactions with NPCs have tended to be highly scripted, to be limited to natural language responses to be selected by the player, and to not involve dynamic change in game state. In this work, we demonstrate that use of a few example conversational prompts can power a conversational agent to generate both natural language and novel code. This approach can permit development of NPCs with which players can have grounded conversations that are free-form and less repetitive. We demonstrate our approach using OpenAI Codex (GPT-3 finetuned on GitHub), with Minecraft game development as our test bed. We show that with a few example prompts, a Codex-based agent can generate novel code, hold multi-turn conversations and answer questions about structured data. We evaluate this application using experienced gamers in a Minecraft realm and provide analysis of failure cases and suggest possible directions for solutions.

2021

pdf bib
Structural Biases for Improving Transformers on Translation into Morphologically Rich Languages
Paul Soulos | Sudha Rao | Caitlin Smith | Eric Rosen | Asli Celikyilmaz | R. Thomas McCoy | Yichen Jiang | Coleman Haley | Roland Fernandez | Hamid Palangi | Jianfeng Gao | Paul Smolensky
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)

Machine translation has seen rapid progress with the advent of Transformer-based models. These models have no explicit linguistic structure built into them, yet they may still implicitly learn structured relationships by attending to relevant tokens. We hypothesize that this structural learning could be made more robust by explicitly endowing Transformers with a structural bias, and we investigate two methods for building in such a bias. One method, the TP-Transformer, augments the traditional Transformer architecture to include an additional component to represent structure. The second method imbues structure at the data level by segmenting the data with morphological tokenization. We test these methods on translating from English into morphologically rich languages, Turkish and Inuktitut, and consider both automatic metrics and human evaluations. We find that each of these two approaches allows the network to achieve better performance, but this improvement is dependent on the size of the dataset. In sum, structural encoding methods make Transformers more sample-efficient, enabling them to perform better from smaller amounts of data.

pdf bib
Contrastive Multi-document Question Generation
Woon Sang Cho | Yizhe Zhang | Sudha Rao | Asli Celikyilmaz | Chenyan Xiong | Jianfeng Gao | Mengdi Wang | Bill Dolan
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Multi-document question generation focuses on generating a question that covers the common aspect of multiple documents. Such a model is useful in generating clarifying options. However, a naive model trained only using the targeted (‘positive’) document set may generate too generic questions that cover a larger scope than delineated by the document set. To address this challenge, we introduce the contrastive learning strategy where given ‘positive’ and ‘negative’ sets of documents, we generate a question that is closely related to the ‘positive’ set but is far away from the ‘negative’ set. This setting allows generated questions to be more specific and related to the target document set. To generate such specific questions, we propose Multi-Source Coordinated Question Generator (MSCQG), a novel framework that includes a supervised learning (SL) stage and a reinforcement learning (RL) stage. In the SL stage, a single-document question generator is trained. In the RL stage, a coordinator model is trained to find optimal attention weights to align multiple single-document generators, by optimizing a reward designed to promote specificity of generated questions. We also develop an effective auxiliary objective, named Set-induced Contrastive Regularization (SCR) that improves the coordinator’s contrastive learning during the RL stage. We show that our model significantly outperforms several strong baselines, as measured by automatic metrics and human evaluation. The source repository is publicly available at ‘www.github.com/woonsangcho/contrast_qgen’.

pdf bib
Ask what’s missing and what’s useful: Improving Clarification Question Generation using Global Knowledge
Bodhisattwa Prasad Majumder | Sudha Rao | Michel Galley | Julian McAuley
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The ability to generate clarification questions i.e., questions that identify useful missing information in a given context, is important in reducing ambiguity. Humans use previous experience with similar contexts to form a global view and compare it to the given context to ascertain what is missing and what is useful in the context. Inspired by this, we propose a model for clarification question generation where we first identify what is missing by taking a difference between the global and the local view and then train a model to identify what is useful and generate a question about it. Our model outperforms several baselines as judged by both automatic metrics and humans.

pdf bib
Enriching Transformers with Structured Tensor-Product Representations for Abstractive Summarization
Yichen Jiang | Asli Celikyilmaz | Paul Smolensky | Paul Soulos | Sudha Rao | Hamid Palangi | Roland Fernandez | Caitlin Smith | Mohit Bansal | Jianfeng Gao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Abstractive summarization, the task of generating a concise summary of input documents, requires: (1) reasoning over the source document to determine the salient pieces of information scattered across the long document, and (2) composing a cohesive text by reconstructing these salient facts into a shorter summary that faithfully reflects the complex relations connecting these facts. In this paper, we adapt TP-Transformer (Schlag et al., 2019), an architecture that enriches the original Transformer (Vaswani et al., 2017) with the explicitly compositional Tensor Product Representation (TPR), for the task of abstractive summarization. The key feature of our model is a structural bias that we introduce by encoding two separate representations for each token to represent the syntactic structure (with role vectors) and semantic content (with filler vectors) separately. The model then binds the role and filler vectors into the TPR as the layer output. We argue that the structured intermediate representations enable the model to take better control of the contents (salient facts) and structures (the syntax that connects the facts) when generating the summary. Empirically, we show that our TP-Transformer outperforms the Transformer and the original TP-Transformer significantly on several abstractive summarization datasets based on both automatic and human evaluations. On several syntactic and semantic probing tasks, we demonstrate the emergent structural information in the role vectors and the performance gain by information specificity of the role vectors and improved syntactic interpretability in the TPR layer outputs.(Code and models are available at https://github.com/jiangycTarheel/TPT-Summ)

pdf bib
GPT Perdetry Test: Generating new meanings for new words
Nikolay Malkin | Sameera Lanka | Pranav Goel | Sudha Rao | Nebojsa Jojic
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Human innovation in language, such as inventing new words, is a challenge for pretrained language models. We assess the ability of one large model, GPT-3, to process new words and decide on their meaning. We create a set of nonce words and prompt GPT-3 to generate their dictionary definitions. We find GPT-3 produces plausible definitions that align with human judgments. Moreover, GPT-3’s definitions are sometimes preferred to those invented by humans, signaling its intriguing ability not just to adapt, but to add to the evolving vocabulary of the English language.

2020

pdf bib
Substance over Style: Document-Level Targeted Content Transfer
Allison Hegel | Sudha Rao | Asli Celikyilmaz | Bill Dolan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing language models excel at writing from scratch, but many real-world scenarios require rewriting an existing document to fit a set of constraints. Although sentence-level rewriting has been fairly well-studied, little work has addressed the challenge of rewriting an entire document coherently. In this work, we introduce the task of document-level targeted content transfer and address it in the recipe domain, with a recipe as the document and a dietary restriction (such as vegan or dairy-free) as the targeted constraint. We propose a novel model for this task based on the generative pre-trained language model (GPT-2) and train on a large number of roughly-aligned recipe pairs. Both automatic and human evaluations show that our model out-performs existing methods by generating coherent and diverse rewrites that obey the constraint while remaining close to the original document. Finally, we analyze our model’s rewrites to assess progress toward the goal of making language generation more attuned to constraints that are substantive rather than stylistic.

pdf bib
A Recipe for Creating Multimodal Aligned Datasets for Sequential Tasks
Angela Lin | Sudha Rao | Asli Celikyilmaz | Elnaz Nouri | Chris Brockett | Debadeepta Dey | Bill Dolan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Many high-level procedural tasks can be decomposed into sequences of instructions that vary in their order and choice of tools. In the cooking domain, the web offers many, partially-overlapping, text and video recipes (i.e. procedures) that describe how to make the same dish (i.e. high-level task). Aligning instructions for the same dish across different sources can yield descriptive visual explanations that are far richer semantically than conventional textual instructions, providing commonsense insight into how real-world procedures are structured. Learning to align these different instruction sets is challenging because: a) different recipes vary in their order of instructions and use of ingredients; and b) video instructions can be noisy and tend to contain far more information than text instructions. To address these challenges, we use an unsupervised alignment algorithm that learns pairwise alignments between instructions of different recipes for the same dish. We then use a graph algorithm to derive a joint alignment between multiple text and multiple video recipes for the same dish. We release the Microsoft Research Multimodal Aligned Recipe Corpus containing ~150K pairwise alignments between recipes across 4262 dishes with rich commonsense information.

2019

pdf bib
Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
Elissa Redmiles | Lisa Maszkiewicz | Emily Hwang | Dhruv Kuchhal | Everest Liu | Miraida Morales | Denis Peskov | Sudha Rao | Rock Stevens | Kristina Gligorić | Sean Kross | Michelle Mazurek | Hal Daumé III
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The readability of a digital text can influence people’s ability to learn new things about a range topics from digital resources (e.g., Wikipedia, WebMD). Readability also impacts search rankings, and is used to evaluate the performance of NLP systems. Despite this, we lack a thorough understanding of how to validly measure readability at scale, especially for domain-specific texts. In this work, we present a comparison of the validity of well-known readability measures and introduce a novel approach, Smart Cloze, which is designed to address shortcomings of existing measures. We compare these approaches across four different corpora: crowdworker-generated stories, Wikipedia articles, security and privacy advice, and health information. On these corpora, we evaluate the convergent and content validity of each measure, and detail tradeoffs in score precision, domain-specificity, and participant burden. These results provide a foundation for more accurate readability measurements and better evaluation of new natural-language-processing systems and tools.

pdf bib
Generating a Common Question from Multiple Documents using Multi-source Encoder-Decoder Models
Woon Sang Cho | Yizhe Zhang | Sudha Rao | Chris Brockett | Sungjin Lee
Proceedings of the 3rd Workshop on Neural Generation and Translation

Ambiguous user queries in search engines result in the retrieval of documents that often span multiple topics. One potential solution is for the search engine to generate multiple refined queries, each of which relates to a subset of the documents spanning the same topic. A preliminary step towards this goal is to generate a question that captures common concepts of multiple documents. We propose a new task of generating common question from multiple documents and present simple variant of an existing multi-source encoder-decoder framework, called the Multi-Source Question Generator (MSQG). We first train an RNN-based single encoder-decoder generator from (single document, question) pairs. At test time, given multiple documents, the Distribute step of our MSQG model predicts target word distributions for each document using the trained model. The Aggregate step aggregates these distributions to generate a common question. This simple yet effective strategy significantly outperforms several existing baseline models applied to the new task when evaluated using automated metrics and human judgments on the MS-MARCO-QA dataset.

bib
Controlling the Specificity of Clarification Question Generation
Yang Trista Cao | Sudha Rao | Hal Daumé III
Proceedings of the 2019 Workshop on Widening NLP

Unlike comprehension-style questions, clarification questions look for some missing information in a given context. However, without guidance, neural models for question generation, similar to dialog generation models, lead to generic and bland questions that cannot elicit useful information. We argue that controlling the level of specificity of the generated questions can have useful applications and propose a neural clarification question generation model for the same. We first train a classifier that annotates a clarification question with its level of specificity (generic or specific) to the given context. Our results on the Amazon questions dataset demonstrate that training a clarification question generation model on specificity annotated data can generate questions with varied levels of specificity to the given context.

pdf bib
Answer-based Adversarial Training for Generating Clarification Questions
Sudha Rao | Hal Daumé III
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We present an approach for generating clarification questions with the goal of eliciting new information that would make the given textual context more complete. We propose that modeling hypothetical answers (to clarification questions) as latent variables can guide our approach into generating more useful clarification questions. We develop a Generative Adversarial Network (GAN) where the generator is a sequence-to-sequence model and the discriminator is a utility function that models the value of updating the context with the answer to the clarification question. We evaluate on two datasets, using both automatic metrics and human judgments of usefulness, specificity and relevance, showing that our approach outperforms both a retrieval-based model and ablations that exclude the utility model and the adversarial training.

2018

pdf bib
Multi-Task Neural Models for Translating Between Styles Within and Across Languages
Xing Niu | Sudha Rao | Marine Carpuat
Proceedings of the 27th International Conference on Computational Linguistics

Generating natural language requires conveying content in an appropriate style. We explore two related tasks on generating text of varying formality: monolingual formality transfer and formality-sensitive machine translation. We propose to solve these tasks jointly using multi-task learning, and show that our models achieve state-of-the-art performance for formality transfer and are able to perform formality-sensitive translation without being explicitly trained on style-annotated translation examples.

pdf bib
Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer
Sudha Rao | Joel Tetreault
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Style transfer is the task of automatically transforming a piece of text in one particular style into another. A major barrier to progress in this field has been a lack of training and evaluation datasets, as well as benchmarks and automatic metrics. In this work, we create the largest corpus for a particular stylistic transfer (formality) and show that techniques from the machine translation community can serve as strong baselines for future work. We also discuss challenges of using automatic metrics.

pdf bib
Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information
Sudha Rao | Hal Daumé III
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Inquiry is fundamental to communication, and machines cannot effectively collaborate with humans unless they can ask questions. In this work, we build a neural network model for the task of ranking clarification questions. Our model is inspired by the idea of expected value of perfect information: a good question is one whose expected answer will be useful. We study this problem using data from StackExchange, a plentiful online resource in which people routinely ask clarifying questions to posts so that they can better offer assistance to the original poster. We create a dataset of clarification questions consisting of 77K posts paired with a clarification question (and answer) from three domains of StackExchange: askubuntu, unix and superuser. We evaluate our model on 500 samples of this dataset against expert human judgments and demonstrate significant improvements over controlled baselines.

2017

pdf bib
Are You Asking the Right Questions? Teaching Machines to Ask Clarification Questions
Sudha Rao
Proceedings of ACL 2017, Student Research Workshop

pdf bib
Biomedical Event Extraction using Abstract Meaning Representation
Sudha Rao | Daniel Marcu | Kevin Knight | Hal Daumé III
BioNLP 2017

We propose a novel, Abstract Meaning Representation (AMR) based approach to identifying molecular events/interactions in biomedical text. Our key contributions are: (1) an empirical validation of our hypothesis that an event is a subgraph of the AMR graph, (2) a neural network-based model that identifies such an event subgraph given an AMR, and (3) a distant supervision based approach to gather additional training data. We evaluate our approach on the 2013 Genia Event Extraction dataset and show promising results.

pdf bib
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems
Emily Bender | Hal Daumé III | Allyson Ettinger | Sudha Rao
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems

pdf bib
Towards Linguistically Generalizable NLP Systems: A Workshop and Shared Task
Allyson Ettinger | Sudha Rao | Hal Daumé III | Emily M. Bender
Proceedings of the First Workshop on Building Linguistically Generalizable NLP Systems

This paper presents a summary of the first Workshop on Building Linguistically Generalizable Natural Language Processing Systems, and the associated Build It Break It, The Language Edition shared task. The goal of this workshop was to bring together researchers in NLP and linguistics with a carefully designed shared task aimed at testing the generalizability of NLP systems beyond the distributions of their training data. We describe the motivation, setup, and participation of the shared task, provide discussion of some highlighted results, and discuss lessons learned.

2016

pdf bib
CLIP@UMD at SemEval-2016 Task 8: Parser for Abstract Meaning Representation using Learning to Search
Sudha Rao | Yogarshi Vyas | Hal Daumé III | Philip Resnik
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)

2015

pdf bib
Dialogue focus tracking for zero pronoun resolution
Sudha Rao | Allyson Ettinger | Hal Daumé III | Philip Resnik
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Hands-on Learning to Search for Structured Prediction
Hal Daumé III | John Langford | Kai-Wei Chang | He He | Sudha Rao
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial Abstracts