Sukannya Purkayastha


2023

pdf bib
Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals
Sukannya Purkayastha | Anne Lauscher | Iryna Gurevych
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In many domains of argumentation, people’s arguments are driven by so-called attitude roots, i.e., underlying beliefs and world views, and their corresponding attitude themes. Given the strength of these latent drivers of arguments, recent work in psychology suggests that instead of directly countering surface-level reasoning (e.g., falsifying the premises), one should follow an argumentation style inspired by the Jiu-Jitsu “soft” combat system: first, identify an arguer’s attitude roots and themes, and then choose a prototypical rebuttal that is aligned with those drivers instead of trying to invalidate those. In this work, we are the first to explore Jiu-Jitsu argumentation for peer reviews by proposing the novel task of attitude and theme-guided rebuttal generation. To this end, we enrich an existing dataset for discourse structure in peer reviews with attitude roots, attitude themes, and canonical rebuttals. To facilitate this process, we recast established annotation concepts from the domain of peer reviews (e.g., aspects a review sentence is relating to) and train domain-specific models. We then propose strong rebuttal generation strategies, which we benchmark on our novel dataset for the task of end-to-end attitude and theme-guided rebuttal generation and two subtasks.

pdf bib
Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning
Clifton Poth | Hannah Sterz | Indraneil Paul | Sukannya Purkayastha | Leon Engländer | Timo Imhof | Ivan Vulić | Sebastian Ruder | Iryna Gurevych | Jonas Pfeiffer
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We introduce Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models. By integrating 10 diverse adapter methods into a unified interface, Adapters offers ease of use and flexible configuration. Our library allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups. We demonstrate the library’s efficacy by evaluating its performance against full fine-tuning on various NLP tasks. Adapters provides a powerful tool for addressing the challenges of conventional fine-tuning paradigms and promoting more efficient and modular transfer learning. The library is available via https://adapterhub.ml/adapters.

pdf bib
Romanization-based Large-scale Adaptation of Multilingual Language Models
Sukannya Purkayastha | Sebastian Ruder | Jonas Pfeiffer | Iryna Gurevych | Ivan Vulić
Findings of the Association for Computational Linguistics: EMNLP 2023

Large multilingual pretrained language models (mPLMs) have become the de facto state of the art for cross-lingual transfer in NLP. However, their large-scale deployment to many languages, besides pretraining data scarcity, is also hindered by the increase in vocabulary size and limitations in their parameter budget. In order to boost the capacity of mPLMs to deal with low-resource and unseen languages, we explore the potential of leveraging transliteration on a massive scale. In particular, we explore the UROMAN transliteration tool, which provides mappings from UTF-8 to Latin characters for all the writing systems, enabling inexpensive romanization for virtually any language. We first focus on establishing how UROMAN compares against other language-specific and manually curated transliterators for adapting multilingual PLMs. We then study and compare a plethora of data- and parameter-efficient strategies for adapting the mPLMs to romanized and non-romanized corpora of 14 diverse low-resource languages. Our results reveal that UROMAN-based transliteration can offer strong performance for many languages, with particular gains achieved in the most challenging setups: on languages with unseen scripts and with limited training data without any vocabulary augmentation. Further analyses reveal that an improved tokenizer based on romanized data can even outperform non-transliteration-based methods in the majority of languages.

2022

pdf bib
A Framework to Generate High-Quality Datapoints for Multiple Novel Intent Detection
Ankan Mullick | Sukannya Purkayastha | Pawan Goyal | Niloy Ganguly
Findings of the Association for Computational Linguistics: NAACL 2022

Systems like Voice-command based conversational agents are characterized by a pre-defined set of skills or intents to perform user specified tasks. In the course of time, newer intents may emerge requiring retraining. However, the newer intents may not be explicitly announced and need to be inferred dynamically. Thus, there are two important tasks at hand (a). identifying emerging new intents, (b). annotating data of the new intents so that the underlying classifier can be retrained efficiently. The tasks become specially challenging when a large number of new intents emerge simultaneously and there is a limited budget of manual annotation. In this paper, we propose MNID (Multiple Novel Intent Detection) which is a cluster based framework to detect multiple novel intents with budgeted human annotation cost. Empirical results on various benchmark datasets (of different sizes) demonstrate that MNID, by intelligently using the budget for annotation, outperforms the baseline methods in terms of accuracy and F1-score.

2019

pdf bib
Medical Entity Linking using Triplet Network
Ishani Mondal | Sukannya Purkayastha | Sudeshna Sarkar | Pawan Goyal | Jitesh Pillai | Amitava Bhattacharyya | Mahanandeeshwar Gattu
Proceedings of the 2nd Clinical Natural Language Processing Workshop

Entity linking (or Normalization) is an essential task in text mining that maps the entity mentions in the medical text to standard entities in a given Knowledge Base (KB). This task is of great importance in the medical domain. It can also be used for merging different medical and clinical ontologies. In this paper, we center around the problem of disease linking or normalization. This task is executed in two phases: candidate generation and candidate scoring. In this paper, we present an approach to rank the candidate Knowledge Base entries based on their similarity with disease mention. We make use of the Triplet Network for candidate ranking. While the existing methods have used carefully generated sieves and external resources for candidate generation, we introduce a robust and portable candidate generation scheme that does not make use of the hand-crafted rules. Experimental results on the standard benchmark NCBI disease dataset demonstrate that our system outperforms the prior methods by a significant margin.