Sun Yong


2024

pdf bib
Clear Up Confusion: Advancing Cross-Domain Few-Shot Relation Extraction through Relation-Aware Prompt Learning
Ge Bai | Chenji Lu | Daichi Guo | Shilong Li | Ying Liu | Zhang Zhang | Guanting Dong | Ruifang Liu | Sun Yong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Cross-domain few-shot Relation Extraction (RE) aims to transfer knowledge from a source domain to a different target domain to address low-resource problems.Previous work utilized label descriptions and entity information to leverage the knowledge of the source domain.However, these models are prone to confusion when directly applying this knowledge to a target domain with entirely new types of relations, which becomes particularly pronounced when facing similar relations.In this work, we propose a relation-aware prompt learning method with pre-training.Specifically, we empower the model to clear confusion by decomposing various relation types through an innovative label prompt, while a context prompt is employed to capture differences in different scenarios, enabling the model to further discern confusion. Two pre-training tasks are designed to leverage the prompt knowledge and paradigm.Experiments show that our method outperforms previous sota methods, yielding significantly better results on cross-domain few-shot RE tasks.

pdf bib
Fusion Makes Perfection: An Efficient Multi-Grained Matching Approach for Zero-Shot Relation Extraction
Shilong Li | Ge Bai | Zhang Zhang | Ying Liu | Chenji Lu | Daichi Guo | Ruifang Liu | Sun Yong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Predicting unseen relations that cannot be observed during the training phase is a challenging task in relation extraction. Previous works have made progress by matching the semantics between input instances and label descriptions. However, fine-grained matching often requires laborious manual annotation, and rich interactions between instances and label descriptions come with significant computational overhead. In this work, we propose an efficient multi-grained matching approach that uses virtual entity matching to reduce manual annotation cost, and fuses coarse-grained recall and fine-grained classification for rich interactions with guaranteed inference speed.Experimental results show that our approach outperforms the previous State Of The Art (SOTA) methods, and achieves a balance between inference efficiency and prediction accuracy in zero-shot relation extraction tasks.Our code is available at https://github.com/longls777/EMMA.